Список литературы
1. Centers for Disease Control and Prevention (CDC). Hypertension Cascade: Hypertension Prevalence, Treatment and Control Estimates Among US Adults Aged 18 Years and Older Applying the Criteria From the American College of Cardiology and American Heart Association’s 2017 Hypertension Guideline — NHANES 2013–2016. US Department of Health and Human Services, 2019.
2. Whelton P.K., Carey R.М., Aronow W.S. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the Ame-rican College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [published correction appears in Hypertension. 2018. 71. e140-e141]. Hypertension. 2018. 71. e13-e115. doi: 10.1161/HYP.0000000000000065
3. Chandra A., Neeland I.J., Berry J.D. et al. The relationship of body mass and fat distribution with incident hypertension: observations from the Dallas Heart Study. J. Am. Coll. Cardiol. 2014. 64. 997-1002. doi: 10.1016/j.jacc.2014.05.057
4. World Health Organization. Fact sheet: obesity and overweight. Accessed July 31, 2020. https://www.who.int/news-room/fact-sheets/detail/obesityand-overweight
5. Hales C.М., Carroll M.D., Fryar C.D., Ogden C.L. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief, no 360. Hyattsville, MD: National Center for Health Statistics. 2020. Accessed September 13, 2021. https://www.cdc.gov/nchs/products/databriefs/db360.htm
6. Jensen M.D. et al.; American College of Cardiology/American Heart Association Task Force on Practice Guidelines; Obesity Society. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society [published correction appears in Circulation. 2014. 129(suppl. 2). S139-S140]. Circulation. 2014. 129(suppl. 2). S102-S138. doi: 10.1161/01.cir.0000437739.71477.ee
7. Apovian C.М. et al.; on behalf of the Endocrine Society. Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2015. 100. 342-362. doi: 10.1210/jc.2014-3415
8. Bray G.A. et al. The science of obesity management: an Endocrine Society scientific statement. Endocr. Rev. 2018. 39. 79-132. doi: 10.1210/er.2017-00253
9. Aune D., Sen A., Norat T., Janszky I., Romundstad P., Tonstad S., Vatten L.J. Body mass index, abdominal fatness, and heart failure incidence and mortality: a systematic review and dose-response meta-analysis of рrospective studies. Circulation. 2016. 133. 639-649. doi: 10.1161/CIRCULATIONAHA.115.016801
10. Lu Y., Hajifathalian K., Ezzati M., Woodward M., Rimm E.В., Danaei G.; Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet. 2014. 383. 970-983. doi: 10.1016/S0140-6736(13)61836-X
11. Chang A.R. et al.; CKD Prognosis Consortium (CKD-PC). Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium. BMJ. 2019. 364. k5301. doi: 10.1136/bmj.k5301
12. Li K., Zou J., Ye Z., Di J., Han X., Zhang H., Liu W., Ren Q., Zhang P. Effects of bariatric surgery on renal function in obese patients: a systematic review and meta analysis. PLoS One. 2016. 11. e0163907. doi: 10.1371/journal.pone.0163907
13. Sjöström L. et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012. 307. 56-65. doi: 10.1001/jama.2011.1914
14. Oxlund C. et al. Body mass index, intensive blood pressure management, and cardiovascular events in the SPRINT trial. Am. J. Med. 2019. 132. 840-846. doi: 10.1016/j.amjmed.2019.01.024
15. Hall J.Е., do Carmo J.М., da Silva A.А., Wang Z., Hall M.E. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat. Rev. Nephrol. 2019. 15. 367-385. doi: 10.1038/s41581-019-0145-4
16. Hall J.Е., Brands M.W., Dixon W.N., Smith M.J. Jr. Obesity-induced hypertension. Renal function and systemic hemodynamics. Hypertension. 1993. 22. 292-299. doi: 10.1161/01.hyp.22.3.292
17. O’Dea K., Esler M., Leonard P., Stockigt J.R., Nestel P. Noradrenaline turnover during under- and over-eating in normal weight subjects. Metabolism. 1982. 31. 896-899. doi: 10.1016/0026-0495(82)90178-0
18. Gentile C.L., Orr J.S., Davy B.М., Davy K.P. Modest weight gain is associated with sympathetic neural activation in nonobese humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007. 292. R1834-R1838. doi: 10.1152/ajpregu.00876.2006
19. Schiavon C.A. et al. Effects of bariatric surgery versus medical therapy on the 24-hour ambulatory blood pressure and the prevalence of resistant hypertension. Hypertension. 2019. 73. 571-577. doi: 10.1161/HYPERTENSIONAHA.118.12290
20. Hall J.Е., do Carmo J.М., da Silva А.А., Wang Z., Hall M.E. Obesityinduced hypertension: interaction of neurohumoral and renal mechanisms. Circ. Res. 2015. 116. 991-1006. doi: 10.1161/CIRCRESAHA.116.305697
21. Piché M.Е., Tchernof A., Després J.P. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ. Res. 2020. 126. 1477-1500. doi: 10.1161/CIRCRESAHA.120.316101
22. Messerli F.Н. et al. Obesity and essential hypertension: hemodynamics, intravascular volume, sodium excretion, and plasma renin activity. Arch. Intern. Med. 1981. 141. 81-85. doi: 10.1001/archinte.141.1.81
23. Saxton S.N., Clark B.J., Withers S.B., Eringa E.С., Heagerty A.M. Mechanistic links between obesity, diabetes, and blood pressure: role of perivascular adipose tissue. Physiol. Rev. 2019. 99. 1701-1763. doi: 10.1152/physrev.00034.2018
24. da Silva A.А. et al. Role of hyperinsulinemia and insulin resistance in hypertension: metabolic syndrome revisited. Can. J. Cardiol. 2020. 36. 671-682. doi: 10.1016/j.cjca.2020.02.066
25. Lohmeier T.Е., Hall J.E. Device-based neuromodulation for resistant hypertension therapy. Circ. Res. 2019. 124. 1071-1093. doi: 10.1161/CIRCRESAHA.118.313221
26. Lambert E., Straznicky N., Schlaich M., Esler M., Dawood T., Hotchkin E., Lambert G. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension. 2007. 50. 862-868. doi: 10.1161/HYPERTENSIONAHA.107.094649
27. Alvarez G.Е., Beske S.D., Ballard T.Р., Davy K.P. Sympathetic neural activation in visceral obesity. Circulation. 2002. 106. 2533-2536. doi: 10.1161/01.cir.0000041244.79165.25
28. do Carmo J.М. et al. Control of blood pressure, appetite, and glucose by leptin in mice lacking leptin receptors in proopio-melanocortin neurons. Hypertension. 2011. 57. 918-926. doi: 10.1161/HYPERTENSIONAHA.110.161349
29. de Paula R.В., da Silva A.А., Hall J.E. Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension. 2004. 43. 41-47. doi: 10.1161/01.HYP.0000105624.68174.00
30. Williams B. et al.; British Hypertension Society’s PATHWAY Studies Group. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, doubleblind, crossover trial. Lancet. 2015. 386. 2059-2068. doi: 10.1016/S0140-6736(15)00257-3
31. Hall M.Е. et al. Obesity, hypertension, and chronic kidney disease. Int. J. Nephrol. Renovasc. Dis. 2014. 7. 75-88. doi: 10.2147/IJNRD.S39739
32. Zhu Q., Scherer P.E. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat. Rev. Nephrol. 2018. 14. 105-120. doi: 10.1038/nrneph.2017.157
33. Whaley-Connell A., Sowers J.R. Obesity and kidney disease: from population to basic science and the search for new therapeutic targets. Kidney Int. 2017. 92. 313-323. doi: 10.1016/j.kint.2016.12.034
34. Henegar J.R. et al. Functional and structural changes in the kidney in the early stages of obesity. J. Am. Soc. Nephrol. 2001. 12. 1211-1217. doi: 10.1681/ASN.V1261211
35. Kambham N., Markowitz G.S., Valeri A.М., Lin J., D’Agati V.D. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001. 59. 1498-1509. doi: 10.1046/j.1523-1755.2001.0590041498.x
36. LeFevre M.L.; on behalf of the U.S. Preventive Services Task Force. Behavioral counseling to promote a healthful diet and physical activity for cardiovascular disease prevention in adults with cardiovascular risk factors: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2014. 161. 587-593. doi: 10.7326/M14-1796
37. Arnett D.K. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [published corrections appear in Circulation. 2019. 140. e649-e650, Circulation. 2020. 141. e60, and Circulation. 2020. 141. e771]. Circulation. 2019. 140. e596-e646. doi: 10.1161/CIR.0000000000000678
38. Van Horn L. et al.; on behalf of the American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Stroke Council. Recommended dietary pattern to achieve adherence to the American Heart Association/American College of Cardiology (AHA/ACC) guidelines: a scientific statement from the American Heart Association [published correction appears in Circulation. 2016. 134. e534]. Circulation. 2016. 134. e505-e529. doi: 10.1161/CIR.0000000000000462
39. Rees K., Takeda A., Martin N. et al. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2019. 3. CD009825. doi: 10.1002/14651858.CD009825.pub3
40. Esposito K., Kastorini C.М., Panagiotakos D.В., Giugliano D. Mediterranean diet and weight loss: meta-analysis of randomized controlled trials. Metab. Syndr. Relat. Disord. 2011. 9. 1-12. doi: 10.1089/met.2010.0031
41. Gay H.С., Rao S.G., Vaccarino V., Ali M.K. Effects of different dietary interventions on blood pressure: systematic review and meta-analysis of randomized controlled trials. Hypertension. 2016. 67. 733-739. doi: 10.1161/HYPERTENSIONAHA.115.06853
42. Blumenthal J.А. et al. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study. Arch. Intern. Med. 2010. 170. 126-135. doi: 10.1001/archinternmed.2009.470
43. Juraschek S.Р., Miller E.R. 3rd, Weaver C.М., Appel L.J. Effects of sodium reduction and the DASH diet in relation to baseline blood pressure. J. Am. Coll. Cardiol. 2017. 70. 2841-2848. doi: 10.1016/j.jacc.2017.10.011
44. Graudal N., Hubeck-Graudal T., Jürgens G., Taylor R.S. Dose-response relation between dietary sodium and blood pressure: a meta-regression analysis of 133 randomized controlled trials. Am. J. Clin. Nutr. 2019. 109. 1273-1278. doi: 10.1093/ajcn/nqy384
45. Huang L. et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ. 2020. 368. m315. doi: 10.1136/bmj.m315
46. Sacks F.M. et al.; DASHSodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet: DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 2001. 344. 3-10. doi: 10.1056/NEJM200101043440101
47. Mozaffarian D. et al.; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group. Global sodium consumption and death from cardiovascular causes. N. Engl. J. Med. 2014. 371. 624-634. doi: 10.1056/NEJMoa1304127
48. Filippini T. et al. Potassium intake and blood pressure: a dose-response meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2020. 9. e015719. doi: 10.1161/JAHA.119.015719
49. Cook N.R. et al.; Trials of Hypertension Prevention Collaborative Research Group. Joint effects of sodium and potassium intake on subsequent cardiovascular disease: the Trials of Hypertension Prevention follow-up study. Arch. Intern. Med. 2009. 169. 32-40. doi: 10.1001/archinternmed.2008.523
50. Wilkinson M.J. et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell. Metab. 2020. 31. 92-104.e5. doi: 10.1016/j.cmet.2019.11.004
51. Ganesan K., Habboush Y., Sultan S. Intermittent fasting: the choice for a healthier lifestyle. Cureus. 2018. 10. e2947. doi: 10.7759/cureus.2947
52. Harris L. et al. Intermittent fasting interventions for treatment of overweight and obesity in adults: a systematic review and meta-analysis. JBI Database System. Rev. Implement Rep. 2018. 16. 507-547. doi: 10.11124/JBISRIR-2016-003248
53. Diaz K.М., Shimbo D. Physical activity and the prevention of hypertension. Curr. Hypertens. Rep. 2013. 15. 659-668. doi: 10.1007/s11906-013-0386-8
54. Powell K.E. et al. The scientific foundation for the Physical Activity Guidelines for Americans. 2nd еdition. J. Phys. Act. Health. 2019. 16. 1-11. doi: 10.1123/jpah.2018-0618
55. Swift D.L. et al. The effects of exercise and physical acti-vity on weight loss and maintenance. Prog. Cardiovasc. Dis. 2018. 61. 206-213. doi: 10.1016/j.pcad.2018.07.014
56. Noone C. et al. Comparative efficacy of exercise and antihypertensive pharmacological interventions in reducing blood pressure in people with hypertension: a network meta-analysis. Eur. J. Prev. Cardiol. 2020. 27. 247-255. doi: 10.1177/2047487319879786
57. Ozemek C. et al. Nonpharmacologic management of hypertension: a multidisciplinary approach. Curr. Opin. Cardiol. 2017. 32. 381-388. doi: 10.1097/HCO. 0000000000000406
58. Liu Y. et al. Associations of resistance exercise with cardiovascular disease morbidity and mortality. Med. Sci. Sports Exerc. 2019. 51. 499-508. doi: 10.1249/MSS.0000000000001822
59. Bravata D.М. et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007. 298. 2296-2304. doi: 10.1001/jama.298.19.2296
60. Bhammar D.M., Sawyer B.J., Tucker W.J., Gaesser G.A. Breaks in sitting time: effects on continuously monitored glucose and blood pressure. Med. Sci. Sports Exerc. 2017. 49. 2119-2130. doi: 10.1249/MSS.0000000000001315
61. Champion R.В., Smith L.R., Smith J., Hirlav B., Maylor B.D., White S.L., Bailey D.P. Reducing prolonged sedentary time using a treadmill desk acutely improves cardiometabolic risk markers in male and female adults. J. Sports Sci. 2018. 36. 2484-2491. doi: 10.1080/02640414.2018.1464744
62. Larsen R.N. et al. Breaking up prolonged sitting reduces resting blood pressure in overweight/obese adults. Nutr. Metab. Cardiovasc. Dis. 2014. 24. 976-982. doi: 10.1016/j.numecd.2014.04.011
63. Zeigler Z.S. et al. Effects of standing and light-intensity activity on ambulatory blood pressure. Med. Sci. Sports Exerc. 2016. 48. 175-181. doi: 10.1249/MSS.0000000000000754
64. Zeigler Z.S., Swan P.D., Bhammar D.М., Gaesser G.A. Walking workstation use reduces ambulatory blood pressure in adults with prehypertension. J. Phys. Act. Health. 2015. 12(suppl. 1). S119-S127. doi: 10.1123/jpah.2013-0487
65. Dempsey P.C. et al. Interrupting prolonged sitting with brief bouts of light walking or simple resistance activities reduces resting blood pressure and plasma noradrenaline in type 2 diabetes. J. Hypertens. 2016. 34. 2376-2382. doi: 10.1097/HJH.0000000000001101
66. Piercy K.L. et al. The Physical Activity Guidelines for Americans. JAMA. 2018. 320. 2020-2028. doi: 10.1001/jama.2018.14854
67. Semlitsch T. et al. Long-term effects of weight-reducing diets in people with hypertension. Cochrane Database Syst. Rev. 2016. 3. CD008274. doi: 10.1002/14651858.CD008274.pub3
68. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure: the Trials of Hypertension Prevention, phase II: the Trials of Hypertension Prevention Collabo-rative Research Group. Arch. Intern. Med. 1997. 157. 657-667.
69. Stevens V.J. et al.; Trials for the Hypertension Prevention Research Group. Long-term weight loss and changes in blood pressure: results of the Trials of Hypertension Prevention, phase II. Ann. Intern. Med. 2001. 134. 1-11. doi: 10.7326/0003-4819-134-1-200101020-00007
70. Melby C.L. еt al. Attenuating the biologic drive for weight regain following weight loss: must what goes down always go back up? Nutrients. 2017. 9. E468. doi: 10.3390/nu9050468
71. Wing R.R., Phelan S. Long-term weight loss maintenance. Am. J. Clin. Nutr. 2005. 82(suppl.). 222S-225S. doi: 10.1093/ajcn/82.1.222S
72. Laaksonen D.E. еt al. Weight loss and weight maintenance, ambulatory blood pressure and cardiac autonomic tone in obese persons with the metabolic syndrome. J. Hypertens. 2003. 21. 371-378. doi: 10.1097/00004872-200302000-00029
73. Straznicky N.E. et al. The effects of weight loss versus weight loss maintenance on sympathetic nervous system activity and metabolic syndrome components. J. Clin. Endocrinol. Metab. 2011. 96. E503-E508. doi: 10.1210/jc.2010-2204
74. Gadde K.М., Martin C.К., Berthoud H.R., Heymsfield S.B. Obesity: pathophysiology and management. J. Am. Coll. Cardiol. 2018. 71. 69-84. doi: 10.1016/j.jacc.2017.11.011
75. Siebenhofer A. et al. Long-term effects of weight-reducing drugs in people with hypertension. Cochrane Database Syst. Rev. 2016. 3. CD007654. doi: 10.1002/14651858.CD007654.pub4
76. Cohen J.В., Gadde K.M. Weight loss medications in the treatment of obesity and hypertension. Curr. Hypertens. Rep. 2019. 21. 16. doi: 10.1007/s11906-019-0915-1
77. Wilding J.Р.Н. et al. STEP 1 Study Group. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 2021. 384. 989. doi: 10.1056/NEJMoa2032183
78. FDA Drug Safety Communication. Safety clinical trial shows possible increased risk of cancer with weight-loss medicine Belviq, Belviq XR (lorcaserin) issued on January 14, 2020. Accessed July 26, 2020. https://www.fda.gov/drugs/drug-safety-and-availability/fda-requests-withdrawalweight-loss-drug-belviq-belviq-xr-lorcaserin-market
79. Zhang S., Manne S., Lin J., Yang J. Characteristics of patients potentially eligible for pharmacotherapy for weight loss in primary care practice in the United States. Obes. Sci. Pract. 2016. 2. 104-114. doi: 10.1002/osp4.46
80. English W.J. et al. American Society for Metabolic and Bariatric Surgery estimation of metabolic and bariatric procedures performed in the United States in 2016. Surg. Obes. Relat. Dis. 2018. 14. 259-263. doi: 10.1016/j.soard.2017.12.013
81. Ponce J. et al. American Society for Metabolic and Bariatric Surgery estimation of bariatric surgery procedures in 2015 and surgeon workforce in the United States. Surg. Obes. Relat. Dis. 2016. 12. 1637-1639. doi: 10.1016/j.soard.2016.08.488
82. Mechanick J.I. et al.; American Association of Clinical Endocrinologists; Obesity Society; American Society for Metabolic & Bariatric Surgery. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient — 2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, American Society for Metabolic & Bariatric Surgery. Obesity (Silver Spring). 2013. 21(suppl. 1). S1-S27. doi: 10.1002/oby.20461
83. Rubino F. et al.; on behalf of the Delegates of the 2nd Diabetes Surgery Summit. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016. 39. 861-877. doi: 10.2337/dc16-0236
84. Sandoval D.А., D’Alessio D.A. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol. Rev. 2015. 95. 513-548. doi: 10.1152/physrev.00013.2014
85. Bonfils P.К. et al. Roux-en-Y gastric bypass alleviates hypertension and is associated with an increase in mid-regional pro-atrial natriuretic peptide in morbid obese patients. J. Hypertens. 2015. 33. 1215-1225. doi: 10.1097/HJH.0000000000000526
86. Fenske W.К. et al. Effect of bariatric surgery-induced weight loss on renal and systemic inflammation and blood pressure: a 12-month prospective study. Surg. Obes. Relat. Dis. 2013. 9. 559-568. doi: 10.1016/j.soard.2012.03.009
87. Buchwald H. et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004. 292. 1724-1737. doi: 10.1001/jama.292.14.1724
88. Hallersund P. et al. Gastric bypass surgery is followed by lowered blood pressure and increased diuresis: long term results from the Swedish Obese Subjects (SOS) study. PLoS One. 2012. 7. e49696. doi: 10.1371/journal.pone.0049696
89. Adams T.D. et al. Weight and metabolic outcomes 12 years after gastric bypass. N. Engl. J. Med. 2017. 377. 1143-1155. doi: 10.1056/NEJMoa1700459
90. Schauer P.R. et al.; STAMPEDE Investigators. Bariatric Surgery versus intensive medical therapy for diabetes: 5-year outcomes. N. Engl. J. Med. 2017. 376. 641-651. doi: 10.1056/NEJMoa1600869
91. Schiavon C.А. et al. Effects of bariatric surgery in obese patients with hypertension: the GATEWAY randomized trial (Gastric Bypass to Treat Obese Patients With Steady Hypertension). Circulation. 2018. 137. 1132-1142. doi: 10.1161/CIRCULATIONAHA.117.032130
92. Schiavon C.А. et al. Three-year outcomes of bariatric surgery in patients with obesity and hypertension: a randomized clinical trial. Ann. Intern. Med. 2020. 173. 685-693. doi: 10.7326/M19-3781
93. Khan S. et al. Trends in bariatric surgery from 2008 to 2012. Am. J. Surg. 2016. 211. 1041-1046. doi: 10.1016/j.amjsurg.2015.10.012
94. Chang S.Н. et al. The effectiveness and risks of bariatric surgery: an updated systematic review and metaanalysis, 2003–2012. JAMA Surg. 2014. 149. 275-287. doi: 10.1001/jamasurg.2013.3654
95. Aminian A. et al. How safe is metabolic/ diabetes surgery? Diabetes Obes. Metab. 2015. 17. 198-201. doi: 10.1111/dom.12405
96. Hales C.М., Carroll M.D., Fryar C.D., Ogden C.L. Pre-valence of obesity among adults and youth: United States, 2015–2016. NCHS Data Brief. 2017. 1-8.
97. Daniels S. et al. American Heart Association Childhood Obesity Research Summit: executive summary. Circulation. 2009. 119. 2114-2123. doi: 10.1161/CIRCULATIONAHA.109.192215
98. Miliku K. et al. Associations of maternal and paternal blood pressure patterns and hypertensive disorders during pregnancy with childhood blood pressure. J. Am. Heart Assoc. 2016. 5. e003884. doi: 10.1161/JAHA.116.003884
99. Brown M.А. et al.; International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management re-commendations for international practice. Hypertension. 2018. 72. 24-43. doi: 10.1161/HYPERTENSIONAHA.117.10803