Список литературы
1. Lucas Böttcher, Maria R. D’Orsogna, Tom Chou. Using excess deaths and testing statistics to improve estimates of COVID-19 mortalities. medRxiv. 2021. Preprint. doi: 10.1101/2021.01.10.21249524.
2. Andrea Ganna. Mapping the human genetic architecture of COVID-19 by worldwide meta-analysis. The COVID-19 Host Genetics Initiative. medRxiv. 2021. doi: 10.1101/2021.03.10.21252820.
3. Bismark Singh. International comparisons of COVID-19 deaths in the presence of comorbidities require uniform mortality coding guidelines. International Journal of Epidemiology. 2021. 50(2). 373-377. doi: 10.1093/ije/dyaa276.
4. Mike K.P. So, Amanda M.Y. Chu, Agnes Tiwari, Jacky N.L. Chan. On topological properties of COVID-19: predicting and assessing pandemic risk with network statistics. SoSci. Rep. 2021. 11. 5112. doi: 10.1038/s41598-021-84094-z.
5. Офіційний сайт Всесвітньої організації охорони здоров’я. Оперативна статистична інформація [Електронний ресурс]. Режим доступу: http://www.who.int/.
6. David Hillus, Tatjana Schwarz, Pinkus Tober-Lau, Kanika Vanshylla, Hana Hastor, Charlotte Thibeault et al. Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study. Lancet Respir. Med. 2021. doi: 10.1016/S2213-2600(21)00357-X.
7. Pinkus Tober-Lau, Tatjana Schwarz, Kanika Vanshylla, David Hillus, Henning Gruell et al., the EICOV/COVIM Study Group. Long-term immunogenicity of BNT162b2 vaccination in older people and younger health-care workers. Lancet Respir. Med. 2021. 9(11). E104-E105. doi: 10.1016/S2213-2600(21)00456-2.
8. Gregory Milne, Thomas Hames, Chris Scotton, Nick Gent, Ale-xander Johnsen, Roy M. Anderson et al. Does infection with or vaccination against SARS-CoV-2 lead to lasting immunity? Lancet Respir. Med. 2021. doi: 10.1016/S2213-2600(21)00407-0.
9. Intikhab Alam, Allan Kamau, Maxat Kulmanov, Stefan T. Arold, Takashi Gojobori, Arnab Pain, Carlos M. Duarte. Functional pangenome analysis provides insights into the origin, function and pathways to therapy of SARS-CoV-2 coronavirus. bioRxiv. 2020. doi: 10.1101/2020.02.17.952895.
10. Jasper Fuk-Woo Chan, Kin-Hang Kok, Zheng Zhu, Hin Chu, Kelvin Kai-Wang To, Shuofeng Yuan et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 2020. 9(1). 221-236. doi: 10.1080/22221751.2020.1719902.
11. Emily C.W. Hung, Stephen S.C. Chim, Paul K.S. Chan, Yu K. Tong, Enders K.O. Ng, Rossa W.K. et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin. Chem. 2003. 49(12). 2108-2109. doi: 10.1373/clinchem.2003.025437.
12. Caner Bagci, David Bryant, Banu Cetinkaya, Daniel H. Huson. Microbial phylogenetic context using phylogenetic outlines. Genome Biology and Evolution. 2021. 13(9). doi: 10.1093/gbe/evab213.
13. Jian-Yu Jiao, Lan Liu, Zheng-Shuang Hua, Bao-Zhu Fang, En-Min Zhou, Nimaichand Salam et al. Microbial dark matter coming to light: challenges and opportunities. National Science Review. 2021. 8(3). doi: 10.1093/nsr/nwaa280.
14. Рекомендації ВООЗ щодо діагностування COVID-19. Режим доступу: https://www.who.int/ru/news/item/29-01-2021-who-publishes-new-essential-diagnostics-list-and-urges-countries-to-prioritize-investments-in-testing
15. ВОЗ: геномное секвенирование SARS-CoV-2 для целей общественного здравоохранения. Режим доступа: https://apps.who.int/iris/bitstream/handle/10665/338483/WHO-2019-nCoV-genomic_sequencing-2021.1-rus.pdf
16. Selye H. Stress without distress. New American Library. New York, 1974. 193.
17. Nicolaides N.C., Kyratzi E., Lamprokostopoulou A., Chrousos G.P., Charmandari E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation. 2015. 22(1–2). 6-19. doi: 10.1159/000362736.
18. Cantor D., Ramsden E. Stress, shock, and adaptation in the twentieth century. Rochester (NY): University of Rochester Press, 2014. https://www.ncbi.nlm.nih.gov/books/NBK189532/?report=classic
19. Sternberg E.M., Chrousos G.P., Wilder R.L. The stress response and the regulation of inflammatory disease. Ann. Intern. Med. 1992. 117. 854-866.
20. Agorastos Agorastos, Nicolaides Nicolas C., Bozikas Vasilios P., Chrousos George P., Panagiota Pervanidou. Multilevel interactions of stress and circadian system: implications for traumatic stress. Journal Frontiers in Psychiatry. 2020. 10. 1003. doi: 10.3389/fpsyt.2019.01003.
21. Chrousos G.P., Gold P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. J. Am. Med. Assoc. 1992. 267. 1244-1252.
22. Chigr F., Rachidi F., Tardivel C. Modulation of orexigenic and anorexigenic peptides gene expression in the rat DVC and hypothalamus by acute immobilization stress. Front. Cell. Neurosci. 2014. 8. 198. doi: 10.3389/fncel.2014.00198.
23. Goldstein D.S. The extended autonomic system, dyshomeostasis, and COVID-19. Clin. Auton. Res. 2020. 30. 299-315. doi: 10.1007/s10286-020-00714-0.
24. Elizabeth O. Johnson, Themis C. Kamilaris, George P. Chrousos, Philip W. Gold. Mechanisms of stress: A dynamic overview of hormonal and behavioral homeostasis. Neuroscience & Biobehavioral Reviews. 1992. 6(2). 115-130. doi: 10.1016/S0149-7634(05)80175-7.
25. Yeshun Wu, Xiaolin Xu, Zijun Chen, Jiahao Duan, Kenji Hashimoto, Ling Yang et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Behavior and Immunity. 2020. 87. 18-22. doi: 10.1016/j.bbi.2020.03.031.
26. Filatov A., Sharma P., Hindi F., Espinosa P.S. Neurological complications of coronavirus disease (COVID-19): encephalopathy. Cureus. 2020. 12(3). e7352. doi: 10.7759/cureus.7352.
27. Del Rio Rodrigo, Marcus Noah J., Inestrosa Nibaldo C. Potential role of autonomic dysfunction in COVID-19 morbidity and mortality. Frontiers in Physiology. 2020. 11. 1248. doi: 10.3389/fphys.2020.561749.
28. Peter W. Abel, Michael T. Piascik. Introduction to autonomic nervous system drugs. Pharmacology and Therapeutics for Dentistry. 7th ed. 2017. 71-81. doi: 10.1016/B978-0-323-39307-2.00005-9.
29. Ling Mao, Huijuan Jin, Mengdie Wang, Yu Hu, Shengcai Chen, Quanwei He et al. Neurologic manifestations of hospitalized patients 2020 with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020. 77(6). 683-690. doi: 10.1001/jamaneurol.2020.1127.
30. Isaac H. Solomon, Erica Normandin, Shamik Bhattacharyya, Shibani S. Mukerji, Ahya S. Ali, Gordon Adams et al. Neuropathological features of COVID-19. N. Engl. J. Med. 2020. 383. 989-992. doi: 10.1056/NEJMc2019373.
31. González-Duarte A., Norcliffe-Kaufmann L. Is “happy hypoxia” in COVID-19 a disorder of autonomic interoception? A hypothesis. Clin. Auton Res. 2020. 30. 331-333. doi: 10.1007/s10286-020-00715-z.
32. Consuelo Gutiérrez-Ortiz, Antonio Méndez-Guerrero, Sara Rodrigo-Rey, Eduardo San Pedro-Murillo, Laura Bermejo-Guerrero, Ricardo Gordo-Mañas et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020. 95(5). doi: 10.1212/WNL.0000000000009619.
33. Sharifian-Dorche M., Huot P., Osherov M., Wen D., Saveriano A., Giacomini P.S. et al. Neurological complications of coronavirus infection; a comparative review and lessons learned during the COVID-19 pandemic. Neurol. Sci. 2020. 417(117085). doi: 10.1016/j.jns.2020.117085.
34. Toovey S. Influenza-associated central nervous system dysfunction: a literature review. Travel Med. Infect. Dis. 2008. 6(3). 114-24. doi: 10.1016/j.tmaid.2008.03.003.
35. Yeshun Wu, Xiaolin Xu, Zijun Chen, Jiahao Duan, Kenji Hashimoto, Ling Yang et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain, Behavior and Immunity. 2020. 87. 18-22. doi: 10.1016/j.bbi.2020.03.031.
36. Nanshan Chen, Min Zhou, Xuan Dong, Jieming Qu, Fengyun Gong, Yang Han et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020. 395(10223). 507-13. doi: 10.1016/S0140-6736(20)30211-7.
37. Ghazal Aghagoli, Benjamin Gallo Marin, Nicole J. Katchur, Franz Chaves-Sell, Wael F. Asaad, Sarah A. Murphy. Neurological involvement in COVID-19 and potential mechanisms: a review. Neurocrit. Care. 2021. 34. 1062-1071. doi: 10.1007/s12028-020-01049-4.
38. Fatiha Chigr, Mohamed Merzouki, Mohamed Najimi. Autonomic brain centers and pathophysiology of COVID-19. ACS Chemical Neuroscience. 2020. 11(11). 1520-1522. doi: 10.1021/acschemneuro.0c00265.
39. Melanie Dani, Andreas Dirksen, Patricia Taraborrelli, Miriam Torocastro, Dimitrios Panagopoulos, Richard Sutton et al. Autonomic dysfunction in “long COVID”: rationale, physiology and management strategies. Clin. Med. 2021. 21(1). e63-67. doi: 10.7861/clinmed.2020-0896.
40. Sata Yusuke, Head Geoffrey A., Denton Kate, May Clive N., Schlaich Markus P.J. Role of the sympathetic nervous system and its modulation in renal hypertension. Frontiers in Medicine. 2018. 5. 82. doi: 10.3389/fmed.2018.00082.
41. Gustavo C. Román, Peter S. Spencer, Jacques Reis, Alain Buguet, Mostafa El Alaoui Faris, Sarosh M. et al. The neurology of COVID-19 revisited: a proposal from the Environmental Neurology Specialty Group of the World Federation of Neurology to implement international neurological registries. Journal of the Neurological Sciences. 2020. 414(116884). doi: 10.1016/j.jns.2020.116884.
42. Jerome R. Lechien, Carlos M. Chiesa-Estomba, Daniele R. De Siati, Mihaela Horoi, Serge D. Le Bon, Alexandra Rodriguez et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Otorhinolaryngol. 2020. 277. 2251-2261 doi: 10.1007/s00405-020-05965-1.
43. Stuart J. McDougall, Michael C. Andresen. Independent transmission of convergent visceral primary afferents in the solitary tract nucleus. J. Neurophysiol. 2013. 109(2). 507-517. doi: 10.1152/jn.00726.2012.
44. Alberto Paniz-Mondolfi, Clare Bryce, Zachary Grimes, Ronald E. Gordon, Jason Reidy, John Lednicky et al. Central nervous system involvement by severe respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Med. Virol. 2020. 92(7). 699-702. doi: 10.1002/jmv.25915.
45. Martin C.R., Osadchiy V., Kalani A., Mayer E.A. The brain-gut-microbiome axis. Cellular and Molecular Gastroenterology and Hepatology. 2018. 6(2). 133-48. doi: 10.1016/j.jcmgh.2018.04.003.
46. Bonaz B., Sinniger V., Pellissier S. Vagal tone: effects on sensitivity, motility, and inflammation. Neurogastroenterology & Motility. 2016. 28(4). 455-62. doi: 10.1111/nmo.12817.
47. Imanuel Lerman, Richard Hauger, Linda Sorkin, James Proudfoot, Bryan Davis, Andy Huang et al. Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial. Neuromodulator. 2016. 19. 283-290. doi: 10.1111/ner.12398.
48. Breit Sigrid, Kupferberg Aleksandra, Rogler Gerhard, Hasler Gregor. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. J. Frontiers in Psychiatry. 2018. 9. 44. doi: 10.3389/fpsyt.2018.00044.
49. Hočevar A., Tomšič M., Praprotnik S., Hojnik M., Kveder T., Rozman B. Parasympathetic nervous system dysfunction in primary Sjögren’s syndrome. Electronic Journal Article. 2003. 62(8). 702-704. doi: 10.1136/ard.62.8.702.