Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Журнал «Здоровье ребенка» Том 12, №4, 2017

Вернуться к номеру

Роль механизмов антиоксидантной системы в развитии заболеваний органов дыхания

Авторы: Абатуров А.Е.(1), Волосовец А.П.(2), Борисова Т.П.(1)
(1) — ГУ «Днепропетровская медицинская академия Министерства здравоохранения Украины», г. Днепр, Украина
(2) — Национальный медицинский университет им. А.А. Богомольца, г. Киев, Украина

Рубрики: Педиатрия/Неонатология

Разделы: Справочник специалиста

Версия для печати


Резюме

В огляді літератури викладені сучасні дані щодо ролі протеїнів сімейства NOX у фізіології легень і розвитку захворювань органів дихання. Показано значення фактора транскрипції NRF2, супероксиддисмутаз, каталази, системи глутатіону, глутаредоксинів, тіоредоксинів, пероксиредоксинів у розвитку захворювань органів дихання. Подані спадкові захворювання, асоційовані з генераторами активованих кисневмісних метаболітів і компонентами антиоксидантної системи. Викладені основні маркери оксидативного стресу і процесу запалення в респіраторному тракті.

В обзоре литературы изложены современные данные о роли протеинов семейства NOX в физиологии легких и развитии заболеваний органов дыхания. Показано значение фактора транскрипции NRF2, супероксиддисмутаз, каталазы, системы глутатиона, глутаредоксинов, тиоредоксинов, пероксиредоксинов в развитии заболеваний органов дыхания. Представлены наследственные заболевания, ассоциированные с генераторами активированных кислородсодержащих метаболитов и компонентами антиоксидантной системы. Изложены основные маркеры оксидативного стресса и процесса воспаления в респираторном тракте.

The review of the literature presents current data on the role of NOX proteins in the physiology of the lungs and in the development of respiratory diseases. The value of the transcription factor NRF2, superoxide dismutase, catalase, glutathione system, glutaredoxin, thioredoxin, peroxiredoxin in the development of respiratory diseases was shown. Hereditary di­seases associated with generators of activated oxygen-contai-ning metabolites and components of the antioxidant system are presented. The main markers of oxidative stress and the process of inflammation in the respiratory tract are described.


Ключевые слова

захворювання органів дихання; антиоксидантна система; огляд

заболевания органов дыхания; антиоксидантная система; обзор

diseases of the respiratory system; antioxidant system; review

Введение

Чрезмерная генерация активированных кислородсодержащих метаболитов (АКМ) и активированных азотсодержащих метаболитов может возникнуть как при выраженном возбуждении провоспалительных клеток (нейтрофилы, эозинофилы, макрофаги), привлеченных в легочную ткань в ответ на воздействие патоген-ассоциированных молекулярных структур (РАМР) инфекционных агентов или антигенов, так и в результате воздействия неблагоприятных факторов внешней среды: сигаретного дыма, асбеста, частиц выхлопных газов дизельных двигателей и других веществ, которые содержат свободные радикалы, хиноны и полициклические ароматические углеводороды [31, 59]. Многочисленные данные экспериментальных исследований показали, что оксидативный стресс, обусловленный нарушением работы антиоксидантной системы или индуцированный патогенными микроорганизмами, экологически неблагоприятными факторами, может привести к развитию острых и хронических заболеваний органов дыхания [6, 14, 49, 53, 55]. 
Значение протеинов семейства NOX в развитии заболеваний органов дыхания
Ферменты семейства NOX принимают участие во многих физиологических процессах респираторного тракта, в связи с чем нарушение их функционирования может привести к развитию респираторной патологии (рис. 1).
Из представителей семейства NOX основными участниками неспецифической защиты респираторного тракта от инфекционных агентов являются NOX2 и DUOX [33, 51]. Однако до настоящего времени не существует прямых доказательств того, что нарушение активации NOX2 способствует возникновению инфекционных респираторных заболеваний. Известно, что генетические мутации генов, кодирующих протеины NOX2 (gp91phox), p47phox, p67phox и p22phox, лежат в основе хронической гранулематозной болезни. Однако изучение клинического значения полиморфизмов генов CYBB (gp91phox), NCF1 (p47phox), NCF2 (p67phox) и CYBA (p22phox) не позволило выявить их ассоциации с риском развития инфекционных заболеваний легких [20].
Генерируемые АКМ протеинами семейства NOX играют ключевую роль в патогенезе ряда хронических заболеваний легких, в частности бронхиальной астмы, эмфиземы легкого. Ферменты DUOX1, DUOX2, NOX2 и NOX4 участвуют в развитии хронических бронхообструктивных заболеваний [9, 10, 69]. Представители семейства NOX играют важную роль в патогенезе острого повреждения легкого (NOX2, NOX4), пневмосклероза (NOX4), легочной артериальной гипертензии (NOX4), бронхогенной карциномы (NOX1, NOX4, DUOX1 и DUOX2) [44].

Значение фактора транскрипции NRF2 в развитии заболеваний органов дыхания

На основании многочисленных данных экспериментальных работ установлено, что функционирование фактора транскрипции NRF2 имеет протективный характер, предупреждая развитие хронической обструктивной болезни легких (ХОБЛ), эмфиземы легких. Действие различных провоспалительных агентов (РАМР, токсины инфекционных агентов), оксидантов, в том числе и кислорода при использовании респираторной терапии (гипероксия, искусственная вентиляция легких), при низкой функциональной активности фактора транскрипции NRF2 в ткани легкого сопровождается выраженным поражением клеток [5, 45, 61]. Показано, что у мышей с нокаутом гена Nrf2 под действием сигаретного дыма или в условиях высокой активности нейтрофильной эластазы значительно быстрее развивается эмфизема легких, чем у диких мышей. Трансплантация клеток костного мозга диких мышей мышам с Nrf–/– ингибирует воспалительный процесс и предупреждает развитие эмфиземы легкого [17, 50]. Применение активатора фактора транскрипции NRF2-1-[2-циано-3-х,12-диоксоолеан-1,9 (11)-диен-28-OYL] имидазола достоверно снижает уровень оксидативного стресса, апоптоза альвеолоцитов и легочной гипертензии у мы-
шей Nrf2+/+, подвергнутых действию сигаретного дыма [62]. 

Значение супероксиддисмутаз в развитии заболеваний органов дыхания 

В настоящее время идентифицировано множество однонуклеотидных полиморфизмов (SNP) генов различных изоформ супероксиддисмутаз (SOD). Однако из более 90 SNP гена CuZnSOD не идентифицировано ни одного полиморфизма, который был бы ассоциирован с заболеваниями легких. Большинство SNP гена CuZnSOD, которые сопровождаются синтезом фермента со сниженной функциональной активностью, связаны с возникновением дегенеративных неврологических заболеваний 
[18, 38].
Идентифицировано, что SNP Val16Ala гена MnSOD несет риск развития злокачественных заболеваний легких [34, 54]. Полиморфизм Val16Ala гена MnSOD ассоциирован с развитием гипертонической болезни, сахарного диабета II типа [38].
Среди мутаций гена ECSOD наибольшее клиническое значение имеет однонуклеотидный полиморфизм R213G [13]. SNP R213G гена ECSOD сопровождается увеличением содержания фермента в сыворотке крови практически в 10 раз. SNP R213G гена ECSOD ассоциирован с ХОБЛ, но не связан с риском развития бронхиальной астмы или идиопатического фиброзирующего альвеолита [12, 15, 67, 68].
Нарушение функционирования SOD может заключаться в развитии некоторых хронических заболеваний легких: ХОБЛ, бронхиальной астмы, идиопатического фиброзирующего альвеолита, интерстициальной пневмонии и саркоидоза (табл. 1) [32].

Значение каталазы в развитии заболеваний органов дыхания 

Острые инфекционно-воспалительные заболевания сопровождаются повышением активности каталазы в сыворотке крови больных. Считают, что увеличение активности каталазы обусловлено высвобождением фермента из поврежденных клеток, в то время как при хронических заболеваниях (ХОБЛ, бронхиальная астма, туберкулез) наблюдается снижение активности каталазы [43, 60, 68]. Дефицит активности каталазы приводит к увеличению концентрации перекиси водорода в ткани легкого и способствует рекрутированию нейтрофилов, активации индуктора металлопротеиназы (EMMPRIN), экстрацеллюлярных металлопротеиназ, продукции TGF-β. Учитывая, что совокупность данных процессов лежит в основе патогенеза фиброза легкого, дефицит каталазы может быть одним из ключевых факторов неблагоприятного течения заболевания [64].
Значение системы глутатиона в развитии заболеваний органов дыхания
Глутатион (GSH) инактивирует множество различных прооксидантов, предопределяя редокс-состояние как во внутриклеточном пространстве ткани легкого, так и люмена респираторного тракта. Во время острых и в ранних стадиях развития хронических воспалительных заболеваний органов дыхания, как правило, наблюдается повышенная концентрация GSH в респираторном тракте. При хронических заболеваниях легких характерно относительно низкое содержание GSH в бронхоальвеолярной жидкости или одновременно и во внутриклеточном пространстве. В основе дефицита GSH могут лежать различные патогенетические механизмы. Так, при муковисцидозе нарушение функционирования канала CFTR обусловливает невозможность транспортировки GSH из внутриклеточного пространства в бронхоальвеолярную жидкость, при ХОБЛ происходит снижение процессов активации фактора транскрипции NRF2, что обу-словливает недостаточность синтеза GSH, при фиброзе легких гиперпродукция TGF-β сопровождается снижением активности γ-GCL и синтеза GSH. Поэтому у больных муковисцидозом наблюдается снижение концентрации GSH только в бронхоальвеолярной жидкости, а у больных с длительным течением ХОБЛ или фиброзом легкого отмечается снижение концентрации GSH в бронхоальвеолярной жидкости и цитоплазме клеток (рис. 2) [37]. 
Снижение уровня концентрации GSH в бронхоальвеолярной жидкости респираторного тракта может привести к уменьшению функциональной активности антипротеаз, в том числе α-1-антитрипсина, α-2-макроглобулина, ингибитора секреторной лейкоцитарной пептидазы (secretory leukocyte peptidase inhibitor — SLPI). Возникновение дисбаланса протеаз и антипротеаз ведет к поражению морфологической структуры легкого, развитию эмфизематоза легких и проявлению прогрессирующей дыхательной недостаточности. Также изменение уровня содержания GSH сопряжено с продукцией провоспалительных цитокинов. Так, у больных с ХОБЛ низкий уровень GSH в бронхоальвеолярной жидкости сопряжен с высокой продукцией IL-8 [48]. 
Полиморфизмы генов ферментов системы GSH ассоциированы с повышенным риском развития некоторых заболеваний легких. Так, SNP генов глутатион-S-трансферазы M1 (GSTM1) и глутатион-S-трансферазы Т1 (GSTT1) ассоциированы с высоким риском развития ХОБЛ и эмфиземы легких [19, 41], SNP Val105Ile гена глутатион-S-трансферазы Р1 (GSTP1) и делеция гена GSTM1 — с риском развития бронхиальной астмы у детей и взрослых [22, 25, 30]. 

Значение глутаредоксинов в развитии заболеваний органов дыхания 

В настоящее время установлено, что представители семейства глутаредоксинов (GRX) участвуют в патогенезе многих заболеваний органов дыхания, в том числе бронхиальной астмы, ХОБЛ, муковисцидоза, интерстициальных заболеваний легких [35, 65]. Показано, что при хронических обструктивных заболеваниях происходят изменения продукции и содержания некоторых GRX. Установлено, что у курильщиков и больных с интерстициальной пневмонией, ХОБЛ, саркоидозом, аллергическим альвеолитом снижена экспрессия GRX в альвеолярных макрофагах и уровень ее снижения коррелирует с тяжестью заболевания и функциональными возможностями легких. Низкий уровень содержания GRX определяет недостаточность процесса деглутатионилирования [11, 39]. В эксперименте на моделях аллергического воспаления респираторного тракта мышей показано индуцирующее действие триггера на продукцию GRX1. При обострении бронхиальной астмы происходит повышение уровня содержания мРНК и протеинов GRX1 в ткани легких [4, 35, 40]. Установлено, что протеин GRX1, контролируя S-глутатионилирование, играет решающую роль в активизации альвеолярных макрофагов и продукции провоспалительных цитокинов, ассоциированных с внутриклеточным NF-κB-сигнальным путем [2].

Значение тиоредоксинов и пероксиредоксинов в развитии заболеваний органов дыхания 

Недавние исследования показали, что тиоредоксины (TRX) и пероксиредоксины (PRX) вносят существенный вклад в патогенез вирусных пневмоний, ХОБЛ, бронхиальной астмы, муковисцидоза, синдрома острого повреждения легкого. При усилении экспрессии TRX или применении рекомбинантного TRX защищается ткань легкого от повреждающего действия АКМ [16, 28, 42, 52, 57, 65]. Однако в настоящее время выявление полиморфизмов генов антиоксидантных протеинов не может быть рекомендовано для проведения скрининговых исследований [54].

Наследственные заболевания, ассоциированные с генераторами АКМ и компонентами антиоксидантной системы

К наследуемым заболеваниям, в основе которых лежат мутации генов генераторов АКМ и компонентов антиоксидантной системы, относятся хроническая гранулематозная болезнь, акаталазия, дефицит глутаматцистеин лигазы, дефицит глутатионсинтетазы, дефицит γ-глутамилтранспептидазы, дефицит 5-оксипролиназы, дефицит дипептидазы.

Наследственное заболевание, ассоциированное с активностью NOX2

Хроническая гранулематозная болезнь

Хроническая гранулематозная болезнь (ХГБ) (OMIM 306400, 233690, 233700, 233710, 608203) является первичным иммунодефицитом у лиц мужского пола, которая впервые была выделена в отдельную нозологическую единицу в 1957 году. В основе ХГБ лежат мутации генов CYBB (65 %), NCF1 (25 %), NCF2 и CYBA. Частота встречаемости ХГБ колеблется от 1/450 000 до 1/200 000 [7, 26, 27, 58].

Дефицит НАДФH оксидазной (NOX2) активности препятствует развитию нормального оксидантного взрыва фагоцитирующих клеток. В связи с этим фагоцитирование каталаза-продуцирующих бактерий не сопровождается их гибелью. Данные микроорганизмы выживают в условиях NOX2-дефицитной фагосомы, индуцируя развитие хронического гранулематозного воспаления [29, 66].
У больных с ХГБ дефицит активности НАДФН оксидазы сопровождается низким уровнем экспрессии TLR5, TLR9, CD11b, CD18, CD35 и CXCR1 нейтрофилами. Снижение экспрессии TLR5 нарушает возбуждение нейтрофилов флагеллином жгутиковых бактерий, а снижение экспрессии CD11b/CD18 нарушает процесс фагоцитоза Staphylococcus aureus. Уровни экспрессии TLR5 и CD18 прямо коррелируют с тяжестью течения ХГБ. Дефицит АКМ, ассоциированный с мутациями генов протеинов комплекса НАДФН оксидазы, обусловливает снижение экспрессии индоламин-2,3-диоксигеназы (IDO), NFE2L2 и повышение активности NLRP3-инфламмасомы, что приводит к активации Th17-лимфоцитов. Гиперактивность NLRP3-инфламмасомы и высокий уровень активации Th17-клеток обусловливают чрезмерность ответной воспалительной реакции на инфекционные агенты при ХГБ. Таким образом, при ХГБ дефицит АКМ, с одной стороны, лежит в основе снижения рекогниции и киллинга инфекционных агентов, а с другой — индуцирует воспаление особо выраженной активности [7]. 
Манифестация заболевания в большинстве случаев отмечается на первом году жизни. Клинически ХГБ характеризуется длительно протекающими антибиотикорезистентными инфекционно-воспалительными заболеваниями органов дыхания, кожи, лимфатических узлов (пневмониями, инфекционным дерматитом, остеомие-литом, тяжелыми абсцессами кожи, гнойными лимфаденитами), которые отличаются склонностью к генерализации процесса и гепатоспленомегалией. Основными причинно-значимыми возбудителями инфекционного процесса при ХГБ являются продуцирующие каталазу бактерии (Staphylococcus aureus, Staphylococcus epidermidis, Burkholderia cepacia, Nocardia, Mycobacteria, Klebsiella, Serratia marcescens, Pseudomonas species) и грибы (Candida, Aspergillus species) [63, 66].

Наследственное заболевание, ассоциируемое с активностью каталазы

Акаталазия
Отсутствие или выраженный дефицит каталазы выделен в отдельную нозологическую единицу — акаталазию, или болезнь Такахары. Акаталазия — редкое аутосомное рецессивное генетическое заболевание, в основе которого лежат мутации гена CAT. В зависимости от снижения активности каталазы различают акаталазию и гипокаталаземию. Снижение активности каталазы от 50 до 90 % от физиологической нормы считается гипокаталаземией, более чем на 90 % — акаталазией. Частота встречаемости акаталазии составляет 0,04/1,000 в Швейцарии, 0,05/1,000 — в Венгрии и 0,8/1,000 — в Японии. В других странах акаталазия отмечается спорадически [23]. 
Манифестация заболевания наблюдается в периоде детства, чаще в старшем школьном возрасте. Основными клиническими проявлениями акаталазии являются: прогрессирующая гангренозная гранулема, рецидивирующие язвы слизистой оболочки полости рта, генерализованный гингивит, быстро переходящий в пародонтит, который приводит к потере зубов, высокий риск развития сахарного диабета. Снижение активности каталазы обусловливает повышение концентрации H2O2 в сыворотке крови и тканях больных. Избыточное содержание перекиси водорода вызывает деструкцию инсулинпродуцирующих β-клеток поджелудочной железы, которые высокочувствительны к процессу окисления. Некоторые мутации гена CAT приводят к нарушению липидного, гомоцистеинового обмена и сопровождаются развитием артериальной гипертензии и витилиго. Обработка крови больных акаталазией перекисью водорода не сопровождается образованием пузырьков. В процессе взаимодействия с перекисью водорода кровь больных приобретает коричнево-желтый цвет [24, 47, 71, 72].

Наследственные заболевания, ассоциируемые с системой глутатиона 

Наследственные дефекты функционирования ферментов системы глутатиона (γ-глутаматцисте-инлигаза/γ-глутамилцистеинсинтетаза, глутатион-
синтетаза, γ-глутамилтрансфераза, дипептидаза и 5-оксопролиназа) встречаются очень редко, но протекают с ранним неблагоприятным исходом (табл. 2). Ведущим клиническим признаком аутосомно-рецессивных дефицитов γ-глутаматцистеинлигазы и глутатионсинтетазы является гемолитическая анемия. Примерно 25 % пациентов с наследственной недостаточностью глутатионсинтетазы умирают в периоде раннего детства [21, 46]. Клинические проявления и методы диагностики врожденных дефицитов данных ферментов подробно описаны Ellinor Ristoff и Agne Larsson (табл. 2) [56].

Маркеры оксидативного стресса при заболеваниях органов дыхания

Для оценки оксидативного стресса рекомендуют использовать неинвазивные методы исследования, которые позволяют определить уровень генерации АКМ (H2O2), ААМ (NO●), состояние антиоксидантной системы (GSH, GSSG, активность ферментных антиоксидантов), активность окисления белков (аденозин, нитротирозин, нитриты, нитраты, S-нитрозотиолы), окисления ДНК (8-гидрокси-2-дезоксигуанозин — 8-OHdG), напряжение перекисного окисления липидов (8-изопростан, лейкотриены (B4, C4, D4, E4), Cys-лейкотриены (LTC4, LTD4, LT4), простагландин Е2, тромбоксаны (A2, B2), простагландин D2, альдегиды) (табл. 3).
Выраженность воспалительной реакции рекомендуют определять по содержанию провоспалительных клеток и цитокинов — IL-1F2/IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8/CXCL8, IL-10, IL-12, IL-17, IFN, TNF, TGF и др.
 
Конфликт интересов. Авторы заявляют об отсутствии какого-либо конфликта интересов при подготовке данной статьи.

Список литературы

1. Almaghlouth IA, Mohamed JY, Al-Amoudi M, Al-Ahaidib L, Al-Odaib A, Alkuraya FS. 5-Oxoprolinase deficiency: report of the first human OPLAH mutation. Clin Genet. 2012 Aug;82(2):193-6. doi: 10.1111/j.1399-0004.2011.01728.x. Epub 2011 Jun 30.
2. Aesif SW, Anathy V, Kuipers I, Guala AS, Reiss JN, Ho YS, Janssen-Heininger YM. Ablation of glutaredoxin-1 attenuates lipopolysaccharide-induced lung inflammation and alveolar macrophage activation. Am J Respir Cell Mol Biol. 2011 Apr;44(4):491-9. doi: 10.1165/rcmb.2009-0136OC. Epub 2010 Jun 10.
3. Louhelainen N, Myllärniemi M, Rahman I, Kinnula VL. Airway biomarkers of the oxidant burden in asthma and chronic obstructive pulmonary disease: current and future perspectives. Int J Chron Obstruct Pulmon Dis. 2008;3(4):585-603. PMID: 19281076. 
4. Kuipers I, Bracke KR, Brusselle GG, Aesif SW, Krijgsman R, Arts IC, Wouters EF, Reynaert NL. Altered cigarette smoke-induced lung inflammation due to ablation of Grx1. PLoS One. 2012;7(6):e38984. doi: 10.1371/journal.pone.0038984. Epub 2012 Jun 18.
5. Cho HY, Kleeberger SR. Nrf2 protects against airway disorders. Toxicol Appl Pharmacol. 2010 Apr 1;244(1):43-56. doi: 10.1016/j.taap.2009.07.024. Epub 2009 Jul 29.
6. Comhair SA, Erzurum SC. Antioxidant responses to oxidant-mediated lung diseases. Am J Physiol Lung Cell Mol Physiol. 2002 Aug;283(2):L246-55. doi: 10.1152/ajplung.00491.2001.
7. Rieber N, Hector A, Kuijpers T, Roos D, Hartl D. Current concepts of hyperinflammation in chronic granulomatous disease. Clin Dev Immunol. 2012;2012:252460. doi: 10.1155/2012/252460. Epub 2011 Jul 25.
8. Simon E, Vogel M, Fingerhut R, Ristoff E, Mayatepek E, Spiekerkötter U. Diagnosis of glutathione synthetase deficiency in newborn screening. J Inherit Metab Dis. 2009 Dec;32 Suppl 1:S269-72. doi: 10.1007/s10545-009-1213-x. Epub 2009 Sep 2.
9. Harper RW, Xu C, Eiserich JP, Chen Y, Kao CY, Thai P, Setiadi H, Wu R. Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, by Th1 and Th2 cytokines in respiratory tract epithelium. FEBS Lett. 2005 Aug 29;579(21):4911-7. doi: 10.1016/j.febslet.2005.08.002.
10. Nagai K, Betsuyaku T, Suzuki M, Nasuhara Y, Kaga K, Kondo S, Nishimura M. Dual oxidase 1 and 2 expression in airway epithelium of smokers and patients with mild/moderate chronic obstructive pulmonary disease. Antioxid Redox Signal. 2008 Apr;10(4):705-14. doi: 10.1089/ars.2007.1941.
11. Peltoniemi M, Kaarteenaho-Wiik R, Säily M, Sormunen R, Pääkkö P, Holmgren A, Soini Y, Kinnula VL. Expression of glutaredoxin is highly cell specific in human lung and is decreased by transforming growth factor-beta in vitro and in interstitial lung diseases in vivo. Hum Pathol. 2004 Aug;35(8):1000-7. PMID: 15297967.
12. Qin Z, Reszka KJ, Fukai T, Weintraub NL. Extracellular superoxide dismutase (ecSOD) in vascular biology: an update on exogenous gene transfer and endogenous regulators of ecSOD. Transl Res. 2008 Feb;151(2):68-78. doi: 10.1016/j.trsl.2007.10.003. Epub 2007 Nov 8.
13. Oberley-Deegan RE, Regan EA, Kinnula VL, Crapo JD. Extracellular superoxide dismutase and risk of COPD. COPD. 2009 Aug;6(4):307-12. PMID: 19811392. PMCID: PMC4075061.
14. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006 Mar 10;160(1):1-40. Epub 2006 Jan 23. doi: 10.1016/j.cbi.2005.12.009.
15. Young RP, Hopkins R, Black PN, Eddy C, Wu L, Gamble GD, Mills GD, Garrett JE, Eaton TE, Rees MI. Functional variants of antioxidant genes in smokers with COPD and in those with normal lung function. Thorax. 2006 May;61(5):394-9. Epub 2006 Feb 7. doi: 10.1136/thx.2005.048512.
16. Bentley AR, Kritchevsky SB, Harris TB, Newman AB, Bauer DC, Meibohm B, Clark AG, Cassano PA; Health, Aging, Body Composition Study. Genetic variation in antioxidant enzymes and lung function. Free Radic Biol Med. 2012 May 1;52(9):1577-83. doi: 10.1016/j.freeradbiomed.2012.02.025. Epub 2012 Mar 1.
17. Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, Yamamoto M, Petrache I, Tuder RM, Biswal S. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest. 2004 Nov;114(9):1248-59. doi: 10.1172/JCI21146.
18. Giusti B, Vestrini A, Poggi C, Magi A, Pasquini E, Abbate R, Dani C. Genetic polymorphisms of antioxidant enzymes as risk factors for oxidative stress-associatedcomplications in preterm infants. Free Radic Res. 2012 Sep;46(9):1130-9. doi: 10.3109/10715762.2012.692787. Epub 2012 Jun 13.
19. Kukkonen MK, Hämäläinen S, Kaleva S, Vehmas T, Huuskonen MS, Oksa P, Vainio H, Piirilä P, Hirvonen A. Genetic polymorphisms of xenobiotic-metabolizing enzymes influence the risk of pulmonaryemphysema. Pharmacogenet Genomics. 2011 Dec;21(12):876-83. doi: 10.1097/FPC.0b013e32834d597f.
20. Lee PL, West C, Crain K, Wang L. Genetic polymorphisms and susceptibility to lung disease. J Negat Results Biomed. 2006 Apr 11;5:5. doi: 10.1186/1477-5751-5-5.
21. Njålsson R, Ristoff E, Carlsson K, Winkler A, Larsson A, Norgren S. Genotype, enzyme activity, glutathione level, and clinical phenotype in patients with glutathionesynthetase deficiency. Hum Genet. 2005 Apr;116(5):384-9. Epub 2005 Feb 17. doi: 10.1007/s00439-005-1255-6.
22. Minelli C, Granell R, Newson R, Rose-Zerilli MJ, Torrent M, Ring SM, Holloway JW, Shaheen SO, Henderson JA. Glutathione-S-transferase genes and asthma phenotypes: a Human Genome Epidemiology(HuGE) systematic review and meta-analysis including unpublished data. Int J Epidemiol. 2010 Apr;39(2):539-62. doi: 10.1093/ije/dyp337. Epub 2009 Dec 23.
23. Góth L. A new type of inherited catalase deficiencies: its characterization and comparison to the Japanese and Swiss type of acatalasemia. Blood Cells Mol Dis. 2001 Mar-Apr;27(2):512-7. doi: 10.1006/bcmd.2001.0415.
24. Góth L, Rass P, Páy A. Catalase enzyme mutations and their association with diseases. Mol Diagn. 2004;8(3):141-9. PMID: 15771551.
25. Birbian N, Singh J, Jindal SK, Joshi A, Batra N, Singla N. GSTT1 and GSTM1 gene polymorphisms as major risk factors for asthma in a North Indian population. Lung. 2012 Oct;190(5):505-12. Epub 2012 Apr 7. doi: 10.1007/s00408-012-9385-9.
26. Heyworth PG, Cross AR, Curnutte JT. Chronic granulomatous disease. Curr Opin Immunol. 2003 Oct;15(5):578-84. PMID: 14499268.
27. Holland SM. Chronic granulomatous disease. Clin Rev Allergy Immunol. 2010 Feb;38(1):3-10. doi: 10.1007/s12016-009-8136-z.
28. Kwon HS, Bae YJ, Moon KA, Lee YS, Lee T, Lee KY, Kim TB, Park CS, Moon HB, Cho YS. Hyperoxidized peroxiredoxins in peripheral blood mononuclear cells of asthma patients is associated with asthma severity. Life Sci. 2012 Apr 9;90(13-14):502-8. doi: 10.1016/j.lfs.2012.01.003. Epub 2012 Jan 20.
29.  Khanna G, Kao SC, Kirby P, Sato Y. Imaging of chronic granulomatous disease in children. Radiographics. 2005 Sep-Oct;25(5):1183-95. doi: 10.1148/rg.255055011.
30. Karam RA, Pasha HF, El-Shal AS, Rahman HM, Gad DM. Impact of glutathione-S-transferase gene polymorphisms on enzyme activity, lung function andbronchial asthma susceptibility in Egyptian children. Gene. 2012 Apr 15;497(2):314-9. doi: 10.1016/j.gene.2012.01.059. Epub 2012 Feb 1.
31. Kim BJ, Hong SJ. Ambient air pollution and allergic diseases in children. Korean J Pediatr. 2012 Jun;55(6):185-92. doi: 10.3345/kjp.2012.55.6.185. Epub 2012 Jun 21.
32. Kinnula VL, Crapo JD. Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med. 2003 Jun 15;167(12):1600-19. doi: 10.1164/rccm.200212-1479SO.
33. Krause KH. Tissue distribution and putative physiological function of NOX family NADPH oxidases. Jpn J Infect Dis. 2004 Oct;57(5):S28-9. PMID: 15507765.
34. Qiu LX, Yao L, Mao C, Chen B, Zhan P, Yuan H, Xue K, Zhang J, Hu XC. Lack of association between MnSOD Val16Ala polymorphism and breast cancer risk: a meta-analysis involving 58,448 subjects. Breast Cancer Res Treat. 2010 Sep;123(2):543-7. doi: 10.1007/s10549-010-0777-3. Epub 2010 Feb 9.
35.  Lillig CH, Berndt C, Holmgren A. Glutaredoxin systems. Biochim Biophys Acta. 2008 Nov;1780(11):1304-17. doi: 10.1016/j.bbagen.2008.06.003. Epub 2008 Jun 18.
36. Liu Y, Prasad R, Wilson SH. HMGB1: roles in base excision repair and related function. Biochim Biophys Acta. 2010 Jan-Feb;1799(1-2):119-30. doi: 10.1016/j.bbagrm.2009.11.008.
37. Gould NS, Min E, Gauthier S, Martin RJ, Day BJ. Lung glutathione adaptive responses to cigarette smoke exposure. Respir Res. 2011 Oct 7;12:133. doi: 10.1186/1465-9921-12-133.
38. Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med. 2009 Aug 15;47(4):344-56. doi: 10.1016/j.freeradbiomed.2009.05.018. Epub 2009 May 25.
39. Peltoniemi MJ, Rytilä PH, Harju TH, Soini YM, Salmenkivi KM, Ruddock LW, Kinnula VL. Modulation of glutaredoxin in the lung and sputum of cigarette smokers and chronic obstructive pulmonary disease. Respir Res. 2006 Oct 25;7:133. doi: 10.1186/1465-9921-7-133.
40. Reynaert NL, Wouters EF, Janssen-Heininger YM. Modulation of glutaredoxin-1 expression in a mouse model of allergic airway disease. Am J Respir Cell Mol Biol. 2007 Feb;36(2):147-51. Epub 2006 Sep 15. doi: 10.1165/rcmb.2006-0259RC.
41. Molfino NA. Genetic predisposition to accelerated decline of lung function in COPD. Int J Chron Obstruct Pulmon Dis. 2007;2(2):117-9. PMID: 18044683. PMCID: PMC2695610.
42. Mutlak H, Zacharowski K. Role of peroxiredoxin 6 in acute lung injury: potential target? Crit Care Med. 2011 Apr;39(4):899-900. doi: 10.1097/CCM.0b013e31820a4c45.
43. Ghosh S, Janocha AJ, Aronica MA, Swaidani S, Comhair SA, Xu W, Zheng L, Kaveti S, Kinter M, Hazen SL, Erzurum SC. Nitrotyrosine proteome survey in asthma identifies oxidative mechanism of catalase inactivation. J Immunol. 2006 May 1;176(9):5587-97. PMID: 16622028.
44. Griffith B, Pendyala S, Hecker L, Lee PJ, Natarajan V, Thannickal VJ. NOX enzymes and pulmonary disease. Antioxid Redox Signal. 2009 Oct;11(10):2505-16. doi: 10.1089/ARS.2009.2599.
45. Boutten A, Goven D, Artaud-Macari E, Boczkowski J, Bonay M. NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease. Trends Mol Med. 2011 Jul;17(7):363-71. doi: 10.1016/j.molmed.2011.02.006. Epub 2011 Apr 1.
46. Njålsson R, Norgren S. Physiological and pathological aspects of GSH metabolism. Acta Paediatr. 2005 Feb;94(2):132-7. PMID: 15981742.
47. Ogata M, Wang DH, Ogino K. Mammalian acatalasemia: the perspectives of bioinformatics and genetic toxicology. Acta Med Okayama. 2008 Dec;62(6):345-61. PMID: 19122680.
48. Drost EM, Skwarski KM, Sauleda J, Soler N, Roca J, Agusti A, MacNee W. Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax. 2005 Apr;60(4):293-300. doi: 10.1136/thx.2004.027946.
49. Bargagli E, Olivieri C, Bennett D, Prasse A, Muller-Quernheim J, Rottoli P. Oxidative stress in the pathogenesis of diffuse lung diseases: a review. Respir Med. 2009 Sep;103(9):1245-56. doi: 10.1016/j.rmed.2009.04.014. Epub 2009 May 22.
50. Boutten A, Goven D, Boczkowski J, Bonay M. Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway. Expert Opin Ther Targets. 2010 Mar;14(3):329-46. doi: 10.1517/14728221003629750.
51. El-Benna J, Dang PM, Gougerot-Pocidalo MA, Marie JC, Braut-Boucher F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp Mol Med. 2009 Apr 30;41(4):217-25. doi: 10.3858/emm.2009.41.4.058.
52. Schremmer B, Manevich Y, Feinstein SI, Fisher AB. Peroxiredoxins in the lung with emphasis on peroxiredoxin VI. Subcell Biochem. 2007;44:317-44. PMID: 18084901.
53. Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol. 2006 Mar 8;533(1-3):222-39. Epub 2006 Feb 28. doi: 10.1016/j.ejphar.2005.12.087.
54. Crawford A, Fassett RG, Geraghty DP, Kunde DA, Ball MJ, Robertson IK, Coombes JS. Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene. 2012 Jun 15;501(2):89-103. doi: 10.1016/j.gene.2012.04.011. Epub 2012 Apr 14.
55. Reddy SP. The antioxidant response element and oxidative stress modifiers in airway diseases. Curr Mol Med. 2008 Aug;8(5):376-83. PMID: 18691064. PMCID: PMC2828610.
56. Ristoff E, Larsson A. Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis. 2007 Mar 30;2:16. doi: 10.1186/1750-1172-2-16.
57. Xu J, Li T, Wu H, Xu T. Role of thioredoxin in lung disease. Pulm Pharmacol Ther. 2012 Apr;25(2):154-62. doi: 10.1016/j.pupt.2012.01.002. Epub 2012 Jan 25.
58. Roos D, van Bruggen R, Meischl C. Oxidative killing of microbes by neutrophils. Microbes Infect. 2003 Nov;5(14):1307-15. PMID: 14613774.
59. Bancalari E, Claure N, Sosenko IR. Bronchopulmonary dysplasia: changes in pathogenesis, epidemiology and definition. Semin Neonatol. 2003 Feb;8(1):63-71. PMID: 12667831.
60. Scibior D, Czeczot H. [Catalase: structure, properties, functions]. Postepy Hig Med Dosw (Online). 2006;60:170-80. (In Polish). PMID: 16618987.
61. Sykiotis GP, Bohmann D. Stress-activated cap'n'collar transcription factors in aging and human disease. Sci Signal. 2010 Mar 9;3(112):re3. doi: 10.1126/scisignal.3112re3.
62. Sussan TE, Rangasamy T, Blake DJ, Malhotra D, El-Haddad H, Bedja D, Yates MS, Kombairaju P, Yamamoto M, Liby KT, Sporn MB, Gabrielson KL, Champion HC, Tuder RM, Kensler TW, Biswal S. Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):250-5. doi: 10.1073/pnas.0804333106. Epub 2008 Dec 22.
63. de Oliveira-Junior EB, Bustamante J, Newburger PE, Condino-Neto A. The human NADPH oxidase: primary and secondary defects impairing the respiratory burst function and the microbicidal ability of phagocytes. Scand J Immunol. 2011 May;73(5):420-7. doi: 10.1111/j.1365-3083.2010.02501.x.
64. Odajima N, Betsuyaku T, Nagai K, Moriyama C, Wang DH, Takigawa T, Ogino K, Nishimura M. The role of catalase in pulmonary fibrosis. Respir Res. 2010 Dec 29;11:183. doi: 10.1186/1465-9921-11-183.
65. Kinnula VL, Vuorinen K, Ilumets H, Rytilä P, Myllärniemi M. Thiol proteins, redox modulation and parenchymal lung disease. Curr Med Chem. 2007;14(2):213-22. PMID: 17266580.
66. Towbin AJ, Chaves I. Chronic granulomatous disease. Pediatr Radiol. 2010 May;40(5):657-68; quiz 792-3. doi: 10.1007/s00247-009-1503-3. Epub 2010 Feb 5.
67. Kinnula VL, Lehtonen S, Koistinen P, Kakko S, Savolainen M, Kere J, Ollikainen V, Laitinen T. Two functional variants of the superoxide dismutase genes in Finnish families with asthma. Thorax. 2004 Feb;59(2):116-9. PMID: 14760150. doi: 10.1136%2Fthorax.2003.005611.
68. Lakhdar R, Denden S, Kassab A, Leban N, Knani J, Lefranc G, Miled A, Chibani JB, Khelil AH. Update in chronic obstructive pulmonary disease: role of antioxidant and metabolizing gene polymorphisms. Exp Lung Res. 2011 Aug;37(6):364-75. doi: 10.3109/01902148.2011.580416. Epub 2011 
Jul 1.
69. van der Vliet A. Nox enzymes in allergic airway inflammation. Biochim Biophys Acta. 2011 Nov;1810(11):1035-44. doi: 10.1016/j.bbagen.2011.03.004. Epub 2011 Mar 21.
70. Woodruff PG. Novel outcomes and end points: biomarkers in chronic obstructive pulmonary disease clinical trials. Proc Am Thorac Soc. 2011 Aug;8(4):350-5. doi: 10.1513/pats.201101-
015RM.
71. Zamocky M, Furtmüller PG, Obinger C. Evolution of catalases from bacteria to humans. Antioxid Redox Signal. 2008 Sep;10(9):1527-48. doi: 10.1089/ars.2008.2046.
72. Zámocký M, Furtmüller PG, Obinger C. Evolution of structure and function of Class I peroxidases. Arch Biochem Biophys. 2010 Aug 1;500(1):45-57. doi: 10.1016/j.abb.2010.03.024. Epub 2010 
Apr 4.

Вернуться к номеру