Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Журнал «Здоровье ребенка» Том 12, №4, 2017

Вернуться к номеру

Настоящая и будущая этиологическая терапия бактериальных пневмоний 2. Антибактериальная терапия госпитальных пневмоний

Авторы: Абатуров А.Е.(1), Крючко Т.А.(2)
(1) — ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина
(2) — ВГУЗУ «Украинская медицинская стоматологическая академия», г. Полтава, Украина

Рубрики: Педиатрия/Неонатология

Разделы: Справочник специалиста

Версия для печати


Резюме

Вибір антибактеріальних препаратів при лікуванні нозокоміальних пневмоній є досить складною клінічною задачею, що чітко залежить від етіології захворювання. При проведенні антибактеріальної терапії дітям (загальні рекомендації ATS/IDSA) рекомендують: обирати антибіотик згідно з чутливістю до причинно-значимого збудника; віддавати перевагу препаратам з обмеженим спектром антибактеріальної активності; використовувати достатню дозу антибіотика для забезпечення ефективної концентрації в місці інфікування. Першим кроком в алгоритмі вибору антибіотика повинна бути оцінка ризику наявності мультирезистентного патогену як причинно-значимого збудника пневмонії.

Выбор антибактериальных препаратов при лечении нозокомиальных пневмоний представляет достаточно сложную клиническую задачу и четко зависит от этиологии заболевания. При проведении антибактериальной терапии у детей (общие рекомендации ATS/IDSA) рекомендуют: выбирать антибиотик согласно чувствительности причинно-значимого возбудителя; отдавать предпочтение препаратам с ограниченным спектром антибактериальной активности; использовать достаточную дозу антибиотика для обеспечения эффективной концентрации в месте инфицирования. Первым шагом в алгоритме выбора антибиотика может быть учет риска наличия мультирезистентного патогена как причинно-значимого возбудителя пневмонии.

The choice of antibacterial drugs in the treatment of nosocomial pneumonia is a fairly complex clinical task that clearly depends on the etiology of the disease. According to the general guidelines of ATS/IDSA for antibacterial therapy, it is recommended for children with nosocomial pneumonia: to choose an antibiotic according to the sensitivity of the causative agent; to prefer the drugs with a limited range of antibacterial activity; to use a sufficient dose of antibiotic to provide an effective concentration at the site of infection. The first step in the algorithm for choosing an antibiotic may be taking into account the risk of multidrug-resistant pathogen as a causative agent of pneumonia.


Ключевые слова

госпітальна пневмонія; діти; антибактеріальні препарати

госпитальная пневмония; дети; антибактериальные препараты

hospital-acquired pneumonia; children; antibacterial drugs

Введение

Выбор антибактериальных препаратов при лечении нозокомиальных пневмоний прежде всего зависит от этиологии заболевания. Наиболее часто встречаемыми мультирезистентными (multidrug-resistant — MDR) возбудителями госпитальной пневмонии являются: methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Klebsiella pneumoniae (ESBL), Legionella pneumophila, Acinetobacter species [3, 5, 19]. Метициллин-резистентные бактерии Staphylococcus aureus являются частыми MDR-патогенами, индуцирующими нозокомиальные пневмонии [28]. Установлено, что в этиологической структуре госпитальных пневмоний на MRSA приходится 20–30 % [10]. Хотя ванкомицин по-прежнему считают препаратом выбора при лечении пневмонии, вызванной MRSA, его клиническая эффективность в последнее время была поставлена под сомнение. Считают, что линезолид, представляющий семейство оксазолидинонов, является более эффективным антибактериальным препаратом, чем ванкомицин, при проведении терапии госпитальной MRSA-ассоциированной пневмонии [13]. Среди грамотрицательных MDR-бактерий наиболее причинно-значимыми возбудителями госпитальных пневмоний являются бактерии Pseudomonas aeruginosa, Acinetobacter baumanii и Enterobacteriacae, которые резистентны к действию пиперациллина/тазобактама и карбапенемов [26]. 

Антибактериальная терапия госпитальных пневмоний

При проведении антибактериальной терапии у больных детей с нозокомиальной пневмонией рекомендуют: выбирать антибиотик согласно чувствительности причинно-значимого возбудителя (сильная рекомендация с умеренной степенью доказательности); отдавать предпочтение препаратам с ограниченным спектром антибактериальной активности (сильная рекомендация с низкой степенью доказательности); использовать достаточную дозу антибиотика для обеспечения эффективной концентрации в месте инфицирования (сильная рекомендация с низкой степенью доказательности) [4]. 
Общие рекомендации ATS/IDSA по применению антибактериальных препаратов при лечении нозокомиальной пневмонии представлены в табл. 1.
Для этиологической терапии госпитальных пневмоний предлагается использовать новые антибактериальные средства и их сочетания с известными и новыми ингибиторами β-лактамаз (табл. 2). 
Таким образом, выбор антибактериального препарата при лечении больных с госпитальной пневмонией представляет достаточно сложную клиническую задачу. Первым шагом в алгоритме выбора антибиотика может быть учет риска наличия MDR-патогена как причинно-значимого возбудителя пневмонии (рис. 1). 
Конфликт интересов. Авторы заявляют об отсутствии какого-либо конфликта интересов при подготовке данной статьи.

Список литературы

1. Arshad H, Fasanya A, Cheema T, Singh AC. Acute Pneumonia. Crit Care Nurs Q. 2016 Apr-Jun;39(2):148-60. doi: 10.1097/CNQ.0000000000000108.
2. Bassetti M, Righi E, Carnelutti A. New therapeutic options for respiratory tract infections. Curr Opin Infect Dis. 2016 Apr;29(2):178-86. doi: 10.1097/QCO.0000000000000251.
3. Bradley JS. Considerations unique to pediatrics for clinical trial design in hospital-acquired pneumonia and ventilator-associated pneumonia. Clin Infect Dis. 2010 Aug 1;51 Suppl 1:S136-43. doi: 10.1086/653063.
4. Bradley JS, Byington CL, Shah SS et al. The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis. 2011 Oct;53(7):e25-76. doi: 10.1093/cid/cir531.
5. Cilloniz C, Martin-Loeches I, Garcia-Vidal C et al. Microbial Etiology of Pneumonia: Epidemiology, Diagnosis and Resistance Patterns. Int J Mol Sci. 2016 Dec 16;17(12). pii: E2120. doi: 10.3390/ijms17122120.
6. Connors KP, Housman ST, Pope JS. Phase I, open-label, safety and pharmacokinetic study to assess bronchopulmonary disposition of intravenous eravacycline in healthy men and women. Antimicrob Agents Chemother. 2014;58(4):2113-8. doi: 10.1128/AAC.02036-13.
7. de Souza Mendes Cd., de Souza Antunes A.M. Pipeline of Known Chemical Classes of Antibiotics. Antibiotics (Basel). 2013 Dec 6;2(4):500-34. doi: 10.3390/antibiotics2040500.
8. Eckburg PB, Ge Y, Hafkin B. Single- and Multiple-Dose Study to Determine the Safety, Tolerability, Pharmacokinetics, and Food Effect of Oral MRX-I versus Linezolid in Healthy Adult Subjects. Antimicrob Agents Chemother. 2017 Feb 6. pii: AAC.02181-16. doi: 10.1128/AAC.02181-16.
9. El Hajj MS, Turgeon RD, Wilby KJ. Ceftaroline fosamil for community-acquired pneumonia and skin and skin structure infections: a systematic review. Int J Clin Pharm. 2017 Feb;39(1):26-32. doi: 10.1007/s11096-016-0417-z.
10. European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance surveillance in Europe 2013. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2014. Available from: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/antimicrobial-resistance-surveillance-europe-2013.pdf 
11. Falcó V, Burgos J, Papiol E. et at. Investigational drugs in phase I and phase II clinical trials for the treatment of hospital-acquired pneumonia. Expert Opin Investig Drugs. 2016 Jun;25(6):653-65. doi: 10.1517/13543784.2016.1168803. 
12. Ito-Horiyama T, Ishii Y, Ito A. et al. Stability of Novel Siderophore Cephalosporin S-649266 against Clinically Relevant Carbapenemases. Antimicrob Agents Chemother. 2016 Jun 20;60(7):4384-6. doi: 10.1128/AAC.03098-15.
13. Jiang H, Tang RN, Wang J. Linezolid versus vancomycin or teicoplanin for nosocomial pneumonia: meta-analysis of randomised controlled trials. Eur J Clin Microbiol Infect Dis. 2013 Sep;32(9):1121-8. doi: 10.1007/s10096-013-1867-z.
14. Jones TM, Johnson SW, DiMondi VP, Wilson DT. Focus on JNJ-Q2, a novel fluoroquinolone, for the management of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. Infect Drug Resist. 2016 Jun 7;9:119-28. doi: 10.2147/IDR.S105620.
15. Le VT, Le HN, Pinheiro MG. et al. Effects of tedizolid phosphate on survival outcomes and suppression of production of staphylococcal toxins in a rabbit model of MRSA necrotizing pneumonia. Antimicrob Agents Chemother. 2017 Jan 30. pii: AAC.02734-16. doi: 10.1128/AAC.02734-16.
16. Liapikou A, Torres A. Emerging drugs for nosocomial pneumonia. Expert Opin Emerg Drugs. 2016 Sep;21(3):331-41. doi: 10.1080/14728214.2016.1206077.
17. Liu Y, Zhang Y, Wu J et al. A randomized, double-blind, multicenter Phase II study comparing the efficacy and safety of oral nemonoxacin with oral levofloxacin in the treatment of community-acquired pneumonia. J Microbiol Immunol Infect. 2015 Dec 1. pii: S1684-1182(15)00915-9. doi: 10.1016/j.jmii.2015.09.005.
18. Matsumoto T. Arbekacin: another novel agent for treating infections due to methicillin-resistant Staphylococcus aureus and multidrug-resistant Gram-negative pathogens. Clin Pharmacol. 2014 Sep 26;6:139-48. doi: 10.2147/CPAA.S44377.
19. McGrath EJ, Asmar BI. Nosocomial infections and multidrug-resistant bacterial organisms in the pediatric intensive care unit. Indian J Pediatr. 2011 Feb;78(2):176-84. doi: 10.1007/s12098-010-0253-4. 
20. Mendes RE, Farrell DJ, Flamm RK. In Vitro Activity of Lefamulin Tested against Streptococcus pneumoniae with Defined Serotypes, Including Multidrug-Resistant Isolates Causing Lower Respiratory Tract Infections in the United States. Antimicrob Agents Chemother. 2016 Jun 20;60(7):4407-11. doi: 10.1128/AAC.00627-16.
21. Mischnik A, Baumert P, Hamprecht A et al. Susceptibility to cephalosporin combinations and aztreonam/avibactam among third-generation cephalosporin-resistant Enterobacteriaceae recovered on hospital admission. Int J Antimicrob Agents. 2017 Feb;49(2):239-242. doi: 10.1016/j.ijantimicag.2016.10.013.
22. Nagaoka K, Yanagihara K, Morinaga Y et al. In vivo antianaerobe activity of DS-8587, a new fluoroquinolone, against Fusobacterium necrophorum in a mouse model. J Infect Chemother. 2017 Mar;23(3):131-135. doi: 10.1016/j.jiac.2016.09.007.
23. Podos SD, Thanassi JA, Leggio M, Pucci MJ. Bactericidal activity of ACH-702 against nondividing and biofilm Staphylococci. Antimicrob Agents Chemother. 2012 Jul;56(7):3812-8. doi: 10.1128/AAC.00092-12.
24. Purrello SM, Garau J, Giamarellos E et al. Methicillin-resistant Staphylococcus aureus infections: A review of the currently available treatment options. J Glob Antimicrob Resist. 2016 Dec;7:178-186. doi: 10.1016/j.jgar.2016.07.010.
25. Shaw KJ, Barbachyn MR. The oxazolidinones: past, pre-sent, and future. Ann N Y Acad Sci. 2011 Dec;1241:48-70. doi: 10.1111/j.1749-6632.2011.06330.x.
26. Sligl WI, Dragan T, Smith SW. Nosocomial Gram-negative bacteremia in intensive care: epidemiology, antimicrobial susceptibilities, and outcomes. Int J Infect Dis. 2015 Aug;37:129-34. doi: 10.1016/j.ijid.2015.06.024.
27. Smart JI, Corey GR, Stryjewski ME et al. Assessment of Minimum Inhibitory Concentrations of Telavancin by Revised Broth Microdilution Method in Phase 3 Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia Clinical Isolates. Infect Dis Ther. 2016 Dec;5(4):535-544. PMID: 27718118. doi: 10.1007%2Fs40121-016-0133-y.
28. Teshome BF, Lee GC, Reveles KR et al. Application of a methicillin-resistant Staphylococcus aureus risk score for community-onset pneumonia patients and outcomes with initial treatment. BMC Infect Dis. 2015 Sep 18;15:380. doi: 10.1186/s12879-015-1119-1.
29. Van Bambeke F. Renaissance of antibiotics against difficult infections: Focus on oritavancin and new ketolides and quinolones. Ann Med. 2014 Nov;46(7):512-29. doi: 10.3109/07853890.2014.935470.
30. Viasus D, Ramos O, Ramos L et al. Solithromycin for the treatment of community-acquired bacterial pneumonia. Expert Rev Respir Med. 2017 Jan;11(1):5-12. doi: 10.1080/17476348.2017.1249852.
31. Villano S, Steenbergen J, Loh E. Omadacycline: development of a novel aminomethylcycline antibiotic for treating drug-resistant bacterial infections. Future Microbiol. 2016 Oct;11:1421-1434. PMID: 27539442. doi: 10.2217/fmb-2016-0100.
32. Vuong C, Yeh GY, Cheung M. Otto Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs. 2016;25(1):73-93. doi: 10.1517/13543784.2016.1109077.
33. Yamada K, Yamamoto Y, Yanagihara K et al. In vivo efficacy and pharmacokinetics of biapenem in a murine model of ventilator-associated pneumonia with Pseudomonas aeruginosa. J Infect Chemother. 2012 Aug;18(4):472-8. doi: 10.1007/s10156-011-0359-2.
34. Zhang S, Chuong LI, Khang IC et al. Vivo efficacy of CB-027 against methicillin-resistant Staphylococcus aureus, and ceftazidime-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae infections in mice. In: Proceedings of 52nd International Interscience Conference on Antimicrobial Agents and Chemotherapy; San Francisco, CA, USA. 10 September 2012.

Вернуться к номеру