Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



UkrainePediatricGlobal

UkrainePediatricGlobal

Журнал «Здоровье ребенка» Том 12, №3, 2017

Вернуться к номеру

Развитие иммунного ответа при стафилококковой пневмонии (часть 2)

Авторы: Абатуров А.Е., Никулина А.А.
ГУ «Днепропетровская медицинская академия МЗ Украины», г. Днепр, Украина

Рубрики: Педиатрия/Неонатология

Разделы: Справочник специалиста

Версия для печати


Резюме

У статті проаналізовано роль образрозпізнавальних рецепторів, що беруть участь в рекогніції патогенасоційованих молекулярних патернів Staphylococcus aureus. Показані основи функціонування макрофагальних і моноцитарних NLRP3, NLRC5, NLRP7, AIM2 інфламасом, які формують активні форми прозапальних цитокінів IL-1β і IL-18 під час розвитку пневмонії, викликаної Staphylococcus aureus.

В статье проанализирована роль образраспознающих рецепторов, участвующих в рекогниции патогенассоциированных молекулярных структур Staphylococcus aureus. Показаны основы функционирования макрофагальных и моноцитарных NLRP3, NLRC5, NLRP7, AIM2 инфламмасом, которые формируют активные формы провоспалительных цитокинов IL-1β и IL-18 во время развития пневмонии, вызванной Staphylococcus aureus.

The article analyzes the role of pattern-recognition receptors involved in recognition of pathogen-associated molecular patterns of Staphylococcus aureus. There are shown the basic operation of macrophage and monocyte NLRP3, NLRC5, NLRP7, AIM2 inflammasomes that form the active forms of pro-inflammatory cytokines IL-1-beta and IL-18 during the development of pneumonia caused by Staphylococcus aureus.


Ключевые слова

пневмонія; Staphylococcus aureus; імунна відповідь; образрозпізнавальні рецептори; інфламасоми

пневмония; Staphylococcus aureus; иммунный ответ; образраспознающие рецепторы; инфламмасомы

pneumonia; Staphylococcus aureus; immune response, pattern-recognition receptors; inflammasome

Рекогниция патогенассоциированных структур Staphylococcus aureus

Краткая характеристика сенсоров патогенассоциированных молекулярных структур (pathogen associated molecular patterns — PAMP) Staphylococcus aureus представлена в табл. 1.

Toll-подобные рецепторы

В развитии воспаления легочной ткани при инфицировании бактериями Staphylococcus aureus принимают участие TLR2, TLR4, TLR8, TLR9 [2, 74, 82].

TLR2

Рецептор TLR2 представляет собой основной PRR врожденного иммунитета, используемый макроорганизмом в процессе защиты от бактерий Staphylococcus aureus [54].

Ключевое значение рецептора TLR2 в патогенезе стафилококковых инфекций продемонстрировано в многочисленных научных работах. Развитие стафилококковой пневмонии у экспериментальных животных сопровождается избыточной экспрессией TLR2 [4].

Активация TLR2 эпителиоцитов сопровождается высвобождением антимикробных пептидов (antimicrobial peptides — AMP), провоспалительных цитокинов и хемокинов, привлекающих нейтрофилы, препятствующих колонизации бактериями Staphylococcus aureus слизистой оболочки полости носа [76, 84].

Установлено, что отсутствие TLR2 сопровождается снижением резистентности к бактериям Staphylococcus aureus. В частности, колонизация бактериями Staphylococcus aureus носоглотки TLR2-дефицитных нокаутных мышей (Tlr2–/–), как правило, сопровождается развитием инвазивной формы заболевания, а у мышей дикого типа — самопроизвольной санацией [91]. При интраназальном введении бактерий Staphylococcus aureus нокаутным мышам (Tlr2–/–) бактериальное носительство золотистого стафилококка в носоглотке развивалось в 10 раз чаще, чем у мышей дикого типа [30]. У нокаутных мышей (Tlr2–/–) во время стафилококковой инфекции наблюдается достоверно меньший уровень продукции IL-1β и TNF-α, чем у мышей дикого типа [51]. В то же время TLR2-дефицитные макрофаги сохраняют способность продуцировать значительные объемы цитокинов. Причиной сохранения цитокиновой продукции, по всей вероятности, является наличие активирующих сигналов, ассоциированных с другими типами PRR [64]. Однако отсутствие рецепторов TLR2 не оказывает достоверного влияния на исход заболевания [75]. У мышей Tlr2–/– смертность увеличивается только в случае внутривенного пути инфицирования золотистым стафилококком [89]. В противоположность этому мыши Myd88–/– высокочувствительны к золотистому стафилококку независимо от пути инфицирования [73].

В функционировании TLR2 принимают участие аксессуарные молекулы CD14, CD36 [79].

В последнее время доказано, что молекула CD14 принимает участие в рекогниции не только LPS, но и липотейхоевых кислот (LTA). Молекула CD14 в организме представлена в солютабной и мембраносвязанной форме. Солютабная форма CD14 участвует в транспортировке PAMP патогенов к стоковым липопротеинам высокой плотности, в связи с чем предупреждает развитие воспаления. Мембраносвязанная молекула CD14 является корецептором TLR макрофагов, полиморфноядерных лейкоцитов и способствует процессу рекогниции и активации провоспалительных сигнальных путей [1].

Установлено, что LTA золотистого стафилококка могут взаимодействовать с молекулой CD14 [32]. Дотация солютабной молекулы CD14 подавляет воспаление, индуцированное LTA золотистого стафилококка [34]. В то же время стафилококковая инфекция как у нокаутных мышей Cd14–/–, так и у мышей дикого типа протекает со сравнимым уровнем выраженности симптоматики и частоты летального исхода [33].

Мембранный гликопротеин CD36 представляет собой скавенджер-рецептор [26]. Рецептор CD36 участвует в рекогниции диацилглицеридов. Молекула CD36 принимает участие в процессах рекогниции диацилглицеридов совместно с димером TLR2/TLR6, но не с димером TLR2/TLR1 [36]. Коэкспрессия CD36 с TLR2 или с TLR6 сопровождается достоверным повышением активности фактора транскрипции NF-kB в ответ на действие LTA Staphylococcus aureus [79].

Ингибирование мембраносвязанной молекулы CD14 или рецептора CD36 на поверхности цитоплазматической мембраны моноцитов предотвращает связывание LTA, что, в свою очередь, уменьшает TLR2-опосредованную продукцию TNF-α [79].

Рецептор TLR2 участвует в рекогниции PAMP (N-терминального региона липопротеинов (Lpp), TA, LTA, PGN) грамположительных бактерий, в том числе и бактерий Staphylococcus aureus, и экспрессируется многочисленными типами клеток ткани легкого (эпителиоцитами, эндотелиоцитами, моноцитами, макрофагами, нейтрофилами, дендритными, тучными клетками). Лигандами также являются: α-токсин, фенолсолютабные модулины и лейкоцидин Пантона — Валентина Staphylococcus aureus [29, 45, 54, 78, 101].

Staphylococcus aureus индуцированное возбуждение TLR2 сопровождается возбуждением внутриклеточных сигнальных путей: MyD88/PI3K/Akt, MyD88/JNK, MyD88/ERK, MyD88/р38-MAPK и активацией факторов транскрипции NF-κB, AP-1 [43, 61, 97].

Самыми мощными лигандами TLR2 из стафилококковых PAMP признаны Lpp. Бактерии Staphylococcus aureus экспрессируют более 50 Lpp. Выделяют особые тандемные Lpp или SitC, гены которых располагаются в островке патогенности vSaα [77]. Матурация Lpp включает в себя несколько посттрансляционных модификаций, наиболее важной из которых является связывание диацилглицеринацилтрансферазой 1,2-диацилглицерина с жирной кислотой, в результате чего образуются кофермент А и триацилглицерин. Эта модификация имеет важное значение для распознавания TLR2 [57]. Считалось, что грамположительные бактерии, как бактерии лишенные lnt гена, в основном имеют диацилированные липопротеины. Однако установлено, что в стенке золотистого стафилококка присутствуют триацилированные Lpp, в частности стафилококковый липопротеин SitC, который содержит три жирные кислоты [58]. Димер TLR2/TLR1 распознает триацильные Lpp (Pam3-Cys-Ser-Lys4, Pam3CSK4), а димер TLR2/TLR6 — диацильные Lpp (Pam2CSK4 или MALP2) [41, 54].

Cтафилококковый липопротеин SitC, активируя TLR2, MyD88-зависимым способом стимулирует продукцию TNF-α и IL-6 макрофагами [59]. Стимуляция лигандом Pam3CSK4 TLR2 человеческих полиморфноядерных лейкоцитов индуцирует продукцию ряда цитокинов (IL-1β, IL-8/СХСL8, CCL3, CCL4, CCL20, CXCL-2 и CXCL1) [14, 28]. Активация TLR2 Pam3CSK4 увеличивает экспрессию L-селектина и CD11b/CD18, участвующих в миграции нейтрофилов из кровеносного русла в ткань легкого, и приводит к усилению активности нейтрофильного фагоцитоза [7, 16].

В то же время взаимодействие Tlr2 с Pam3CSK4, предшествующее инфицированию метициллинрезистентным штаммом Staphylococcus aureus (methicillin-resistant Staphylococcus aureus — MRSA), приводит, за счет подавления экспрессии хемокинов Cxcl1 и Cxcl2, к снижению выраженности нейтрофильной инфильтрации ткани легкого у мышей [14]. Yi-Guo Chen и соавт. [14] считают, что применение Pam3CSK4 до инфицирования MRSA может стать новым направлением лечения, рестриктирующим чрезмерный воспалительный ответ, угрожающий деструкцией легких, за счет снижения инфильтрации нейтрофилами ткани легкого.

Учитывая, что сенсинг TLR2-активных липопротеинов связан с бактериальным размножением или потерей целостности клеточной стенки Staphylococcus aureus [35], по мнению Isabelle Bekeredjian-Ding и соавт. [6], центральная роль TLR2 в предотвращении стафилококковой инфекции может быть обусловлена двумя TLR2-зависимыми эффектами: 1) активацией продукции AMP, которые вызывают порообразование в бактериальных стенках и, как следствие, гибель патогена, что исключает необходимость последующего рекрутинга фагоцитов; и 2) прайминг-эффектом, в основе которого лежит TLR2-зависимая предактивация внутриклеточных сенсоров эпителиальных клеток и иммуноцитов, которые в случае вторжения Staphylococcus aureus в клетку индуцируют механизмы внутриклеточного лизиса бактерий.

Тейхоевые кислоты (TA) и LTA золотистого стафилококка относятся к умеренным по силе влияния триггерам TLR2. Вместе с тем установлено, что d-аланилированные TA и LTA Staphylococcus aureus индуцируют активную продукцию цитокинов и хемокинов моноцитами или макрофагами. Тейхоевые кислоты вызывают продукцию TNF-a и CXCL2, а LTA Staphylococcus aureus — TNF-a, IL-1β, IL-6, IL-12, IL-10, IL-8/СХСL8, CCL2, CCL3, гранулоцитарного колониестимулирующего фактора, фактора 5a комплемента, лейкотриена-B4, способствуя развитию воспалительной реакции. Липотейхоевые кислоты Staphylococcus aureus в большей степени вызывает продукцию хемокинов (IL-8/СХСL8, CCL2, CCL3) и в меньшей степени — провоспалительных цитокинов (TNF-a, IL-1β, IL-6, IL-12). Однако для проявления провоспалительного эффекта необходима очень высокая концентрация LTA, примерно от 1 до 10 мкг/мл (105–107 КОЕ Staphylococcus aureus содержит 1 мкг LTA) [29]. Таким образом, TA и LTA Staphylococcus aureus, используя TLR2-ассоциированные сигнальные пути, способствуют привлечению преимущественно нейтрофилов в очаг стафилококковой инфекции.

Стафилококковые PGN стимулируют продукцию провоспалительных цитокинов и хемокинов (TNF-a, IL-1β, IL-6 и IL-8/СХСL8) моноцитами, макрофагами и VEGF-α фибробластами. Характерной особенностью PGN Staphylococcus aureus является отсутствие способности индуцировать синтез противовоспалительного интерлейкина IL-10. Необходимо отметить, что PGN бактерий Staphylococcus aureus являются относительно слабым триггером TLR2 (их TLR-индуцирующая активность примерно в 100 раз ниже, чем LPS), вклад которого носит преимущественно акселеративный характер по отношению к активности воспаления, индуцированного другими, более активными стафилококковыми PAMP, такими как Lpp [28, 44].

Стафилококковые порообразующие токсины — фенолсолютабные модулины (phenol soluble modulins — PSM) играют ключевую роль в проявлении патогенности штаммов MRSA. Среди PSM различают пять α-пептидов (s-токсин и PSMα 1–4) и два β-пептида (PSMβ1–2) [81, 93]. Данные факторы вирулентности связываются с формилпептидным рецептором-2 (formyl peptide receptor 2 — FPR2), инициируя хемотаксис нейтрофилов и дендритных клеток [53]. Стафилококковые фенолсолютабные модулины PSMα3 через TLR2-зависимую активацию р38-MAPK/CREB индуцируют секрецию IL-10 дендритными клетками и подавляют TLR2-индуцированную секрецию TNF-α, IL-12 и IL-6. Также PSM ингибируют Тh1-клетки, но активируют Foxp3+ Treg-клетки [2, 3]. Продукцией IL-10 наиболее быстро на Staphylococcus aureus индуцированное возбуждение TLR2 реагируют CD19+CD11b+CD5+B1a-регуляторные клетки [62].

Представляет интерес вероятность существования у TLR2 протективной роли, предупреждающей развитие дисфункции миокарда, ассоциированной со стафилококковой инфекцией [51].

В целом активация TLR2, особенно в ранние периоды заболевания, способствует развитию Th1- и Th17-ответа [50, 86]. Однако диацильные Lpp, активируя TLR2, способствуют продукции тимического стромального лимфопоэтина (thymic stromal lymphopoietin — TSLP) [92], что содействует развитию Th2-ассоциированной реакции клеток и подавлению дифференцировки наивных Т-лимфоцитов в Th1- и Th17-клетки [9]. И кроме того, PAMP Staphylococcus aureus, представляющие собой лиганды TLR2, индуцируя продукцию IL-10, способствуют развитию толерантности и подавлению воспалительного процесса в стадии реконвалесценции.

Таким образом, рецепторы TLR2 играют ключевую роль в развитии стафилококковой инфекции. В острый период заболевания TLR2, индуцируя продукцию цитокинов и хемокинов, которые рекрутируют нейтрофилы и повышают активность фагоцитоза бактерий Staphylococcus aureus, способствуют развитию воспалительной реакции, а в период реконвалесценции, вызывая продукцию IL-10 и пролиферацию Treg-клеток, участвуют в ингибировании активности воспаления.

TLR4

Вероятность участия рецептора TLR4 в развитии иммунного ответа на инфицирование Staphylococcus aureus в последнее время вызывает научно обоснованные сомнения [13]. Несмотря на доказанность возбуждающего влияния лейкоцидина золотистого стафилококка на TLR4 [40], инфицирование бактериями Staphylococcus aureus не сопровождается ни TLR4-зависимой активацией фактора транскрипции NF-kB, ни продукцией провоспалительных цитокинов [13].

Bin Liu и соавт. [65] продемонстрировали, что TLR4 макрофагов в кооперации с TLR2 могут принимать участие в распознавании PAMP Staphylococcus aureus. В частности, они показали, что TLR2 и TLR4 макрофагов физически взаимодействуют друг с другом, играя уникальную роль в регуляции продукции воспалительных цитокинов (TNF-a, IL-12р40 и IL-10) и хемокина CCL5 во время инфекции, вызванной золотистым стафилококком.

TLR8

Anne Krüger и соавт. [55] установили, что высвобождаемая при деградации золотистого стафилококка одноцепочечная РНК взаимодействует с рецептором TLR8 клеток макроорганизма. Согласно данным Bjarte Bergstrøm и соавт. [7] возбуждение одноцепочечной РНК бактерий Staphylococcus aureus рецептора TLR8 макрофагов и моноцитов активирует TAK1-зависимые и TAK1-независимые внутриклеточные сигнальные пути. Активация TAK1-зависимого пути инициирует фактор транскрипции IRF5, что приводит к продукции IFN-β и IL-12, в то время как возбуждение TAK1-независимого сигнального пути активирует транслокацию фактора транскрипции NF-kB в ядро клетки с последующей продукцией провоспалительных цитокинов (IL-1β и IL-18).

TLR9

Иммуноциты распознают внутриклеточно расположенную чужеродную ДНК, экспрессия которой происходит во время роста или гибели патогенных агентов, при помощи нескольких цитоплазматических сенсоров, одним из которых является TLR9 [37, 56, 66] — первый идентифицированный PRR из рецепторов, распознающих ДНК [19]. Рецептор TLR9 участвует в рекогниции CpG ДНК Staphylococcus aureus [100], в том числе и MRSA [90]. Однако, по мнению Yan Sun и соавт. [87], продемонстрировавших сопоставимые уровни цитокиновой продукции при инфицировании Staphylococcus aureus роговицы нокаутных (Tlr9–/–) и мышей дикого типа, рецептор TLR9 не играет существенной роли в развитии стафилококковой инфекции.

В то же время установлено, что CpG ДНК Staphylococcus aureus значительно усиливает Staphylococcus aureus индуцированный фагоцитоз и аутофагию in vitro за счет активации JNK и p38, но не ERK ((extracellular regulated kinase)) ассоциированных сигнальных путей у Tlr9+/+ макрофагов по сравнению с нокаутными Tlr9–/– первичными перитонеальными макрофагами [96].

Dane Parker и Alice Prince [80] показали, что дендритные клетки in vitro при помощи эндоцитоза поглощают бактерии золотистого стафилококка USA300 штамма FPR3757, а Staphylococcus aureus индуцированный эндоцитоз сопровождается активацией TLR9-ассоциированных путей и продукцией IFN I типа. Активация TLR9 миелоидных дендритных клеток сопровождается возбуждением IRF1. Возбуждение экспрессии IFN I типа представляет собой классический ответ возбуждения эндосомальных и цитозольных рецепторов ДНК патогена [98]. TLR9-ассоциированная реакция дендритных клеток на эндоцитированные стафилококки развивается очень быстро: уже через 2 часа отмечается фосфорилирование факторов транскрипции IRF7 и STAT1. Dane Parker и Alice Prince [80] подчеркивают зависимость индукции секреции IFN I типа от причинно-значимого возбудителя инфекционного процесса. Так, если ДНК золотистого стафилококка индуцирует продукцию IFN I типа за счет возбуждения TLR9-ассоциированных сигнальных путей, то пневмококк — за счет активации ДНК сенсоров: Z-DNA-связывающего протеина 1 (Z-DNA binding protein 1 — ZBP1/ DNA-dependent activator of interferon regulatory transcription factors — DAI) и трансмембранного протеина 173 (transmembrane protein 173 — TMEM173/stimulator of interferon genes — STING).

Представляет научный интерес тот факт, что у мышей с делецией гена рецептора TLR9 (Tlr9–/–) или рецептора IFN-α (Ifnar–/–), инфицированных MRSA, в ранний период заболевания уровень бактериального клиренса из ткани легкого достоверно выше, чем у мышей дикого типа [80]. Данная особенность характерна именно для стафилококковой инфекции. При респираторной инфекции, вызванной другими бактериальными патогенами, делеция гена Tlr9 сопровождается снижением уровня бактериального клиренса [8, 21].

Однако, согласно данным Anne Jan van der Mee и соавт. [90], во время пневмонии, вызванной MRSA, у нокаутных мышей Tlr9–/– отмечается более низкий уровень как активности бактериального клиренса (на протяжении первых 24 часов после инфицирования), так и содержания TNF-α и IL-6 (на протяжении первых 6 часов после инфицирования). В более поздний период пневмонии (особенно после 24 часов инфицирования MRSA) для мышей Tlr9–/– характерны более высокие уровни концентрации IL-1β, IL-6, Cxcl2, Cxcl1 в их бронхоальвеолярной жидкости по сравнению с мышами дикого типа. Кроме того, у нокаутных мышей Tlr9–/– наблюдается более выраженное увеличение представительства нейтрофилов в бронхоальвеолярной жидкости в поздний период инфекционного процесса (через 24 и 48 часов после инфицирования MRSA). Активация TLR9 MRSA ассоциирована с уровнем продукции TNF-α [95].

Dane Parker и Alice Prince [80] предполагают, что негативное влияние эффектов TLR9-ассоциированного возбуждения лежит в основе высокой частоты стафилококковой суперинфекции при острых респираторных вирусных инфекциях. Показано что острые респираторные вирусные инфекции, особенно гриппозная инфекция, протекают с активным рекрутированием плазмацитоидных дендритных клеток и усилением продукции IFN I типа в органах дыхания. В свою очередь, избыток IFN I типа, ингибируя элиминацию бактерий Staphylococcus aureus из ткани легкого, способствует развитию очагового инфекционного процесса.

Таким образом, участие рецептора TLR9 в саногенезе пневмонии, вызванной бактериями MRSA, вероятно, приводит преимущественно к негативным последствиям, по крайней мере в периоде начальной реакции на инфекционный агент.

Развитие TLR-ассоциированного цитокинового и антимикробного ответа при стафилококковой пневмонии схематично представлено на рис. 1.

NOD-подобные рецепторы

Внутриклеточно локализованные PAMP бактерий Staphylococcus aureus распознаются цитоплазматическими сенсорами, в частности NLR. Пептидогликаны, которые представляют собой гетерополимеры N-ацетил-D-глюкозамина и N-ацетилмурамовой кислоты, соединенные β-1,4-гликозидными связями, являются основными лигандами NLR: NLRC1/NOD1 и NLRC2/NOD2 [27, 88].

Возбуждение NLRC1 и NLRC2 приводит к индукции сигнального пути, ассоциированного с pецепторной серин-треониновой киназой-2 (receptor interacting serine/threonine kinase 2 — RIPK2) [68]. Рецепторы NLRС1 экспрессируются практически всеми клетками организма, а NLRC2 — макрофагами, альвеолярными макрофагами, дендритными клетками, нейтрофилами, эпителиоцитами респираторного тракта, кератиноцитами, ацидофильными энтероцитами слизистой оболочки кишечника и эндотелиоцитами. Экспрессия NLRC1 преимущественно конститутивная, а NLRC2 — индуцибельная. Индуцирующими факторами продукции NLRC2 являются IFN-γ и TNF-α [67].

Активация NLRC1 обусловлена взаимодействием с диаминопимелиновой кислотой (DAP) — iE-DAP (дипептидом γ-D-glutamyl-meso-diaminopimelic acid); NLRC2 — с мурамилдипептидом MurNAc-L-Ala-D-isoGln (muramyl dipeptide — MDP) [11, 27].

Присутствие MDP в PGN характерно практически для всех грамположительных и грамотрицательных бактерий, в том числе Mycobacterium tuberculosis, Salmonella enterica serovar Typhimurium, Listeria monocytogenes, Streptococcus pneumoniae и Staphylococcus aureus. Наличие iE-DAP свойственно PGN большинства грамотрицательных бактерий и таких грамположительных бактерий, как Listeria monocytogenes и Bacillus subtilis [12, 94]. В связи с тем что PGN стенок бактерий Staphylococcus aureus не содержит iE-DAP, в иммунопатогенезе стафилококковой пневмонии непосредственное участие принимает только NLRC2. Однако рецептор NLRC1 во время стафилококковой пневмонии может модулировать активность NLRC2 [47].

Активация молекул NLRC2 через CARD-CARD-взаимодействие приводит к их олигомеризации и к рекрутированию киназы RIPK2 с последующим формированием мультимолекулярного образования — нодосомы. В 2005 году Koichi S. Kobayashi и соавт. [52] продемонстрировали решающую роль киназы RIPK2 во внутриклеточном сигнальном NOD-ассоциированном пути, показав, что эмбриональные фибробласты, полученные от Ripk2-дефицитных мышей, не способны активировать NF-kB в ответ на введение агонистов NLRC2. Молекулярные тетрамеры 2(NLRC2)-RIPK2 возбуждают активируемую трансформирующим фактором роста b (TGFb) киназу (TGF-beta activated kinase 1 — TAK1) и активируют IKKγ опосредованно — через К-63 сопряженное полиубиквитинилирование. Цитоплазматически расположенная активная киназа TAK1 фосфорилирует ингибиторную субъединицу IKKγ IKK и комплекс IKK приобретает активную димерную форму IKKa/IKKb. Возбужденная IKK фосфорилирует ингибиторные IκB-белки, высвобождая ядерный фактор транскрипции NF-κB. В результате этого образуется активный фактор транскрипции — гетеродимер p65/p50, который, импортируясь в ядро клетки, индуцирует транскрипцию генов, большинство из которых являются основными участниками регуляции воспалительного процесса, неспецифических и специфических механизмов защиты. Активация NLRC2 приводит к возбуждению митогенактивируемых протеинкиназ (MAPK) — p38, ERK 1/2 и JNK (c-Jun N-terminal kinases) — при участии адаптерной молекулы CARD9 (caspase recruitment domain family member 9) (рис. 2) [10, 63, 94].

CARD  NOD  LRR  H2N  COOH  H N  Me  HO  OH  NHR  Coiled-coil

Активация MDP рецептора NLRC2 индуцирует механизмы продукции нескольких цитокинов (TNF-α, IL-1α, IL-1β), хемокинов (IL-8/CXCL8, GM-CSF) и адгезивных молекул (ICAM1, CD44 и TNFAIP6), представляющих критические компоненты рекрутинга, активации провоспалительных клеток, и индукции антибактериальных пептидов, в частности a-дефензинов и b-дефензина-2 (HBD2) [94].

Ronan Kapetanovic и соавт. [46] продемонстрировали, что рецептор NLRC2 способствует воспалительной реакции в ткани легкого, но не является решающим фактором в процессе саногенеза стафилококковой пневмонии. Авторы подчеркивают, что отсутствие NLRC2 сопровождается умеренной активностью воспаления и способствует выздоровлению экспериментальных животных при стафилококковой инфекции. В частности, нокаутные мыши Nod2–/– относительно устойчивы к инфицированию Staphylococcus aureus. Даже инфицирование высокой дозой 109 КОЕ стафилококка не приводило к повышению уровня летальности. Пневмония, вызванная Staphylococcus aureus, у нокаутных мышей Nod2–/– сопровождалась достоверно меньшей потерей массы тела, чем у мышей дикого типа. Кроме того, уровень концентрации воспалительных цитокинов в бронхоальвеолярной жидкости и инфильтрации нейтрофилами пораженной ткани легкого был достоверно более низким у нокаутных мышей Nod2–/–, чем у мышей дикого типа. Также первичные макрофаги с дефицитом Nlrc2 или Tlr2 характеризуются низкой потенцией продукции TNF-α в ответ на инфицирование золотистым стафилококком. Тем не менее, несмотря на более низкие уровни провоспалительных цитокинов и рекрутинга нейтрофилов у нокаутных мышей Nod2–/–, во время стафилококковой пневмонии наблюдается низкая бактериальная нагрузка в бронхоальвеолярной жидкости. Учитывая, что такие провоспалительные цитокины, как TNF-α и IL-1β, обладают способностью поддерживать рост бактерий [69, 70], их высокая концентрация в респираторном тракте может быть причиной более высокой бактериальной нагрузки у мышей дикого типа во время стафилококковой пневмонии.

Результаты исследования Ronan Kapetanovic и соавт. [46] свидетельствуют о более значимой протекторной роли NLRC2 в лейкоцитах, присутствующих в просвете альвеол, чем в лейкоцитах, локализованных в ткани легкого во время стафилококковой пневмонии.

Инфламмасомы

В настоящее время установлено, что в развитии воспалительного ответа на инфицирование Staphylococcus aureus участвуют макрофагальные и моноцитарные NLRP3-, NLRC5-, NLRP7-, AIM2-инфламмасомы, которые формируют активные формы IL-1β и IL-18. Развитие эффектов, связанных с активацией инфламмасом, во время стафилококковой инфекции протекает, как и во всех других случаях, в два этапа. На первом этапе происходит возбуждение TLR клеток макроорганизма PAMP бактериями Staphylococcus aureus, которое приводит к активации фактора транскрипции NF-kB, вызывая продукцию структурных протеинов инфламмасом и проформ интерлейкинов семейства 1, которые накапливаются во внутриклеточном пространстве. На втором этапе происходит формирование и активация инфламмасом. В частности, активация NLRP3-инфламмасомы связана с действием экзогенных факторов: бактериальных токсинов или вирусных нуклеотидов, асбеста, диоксида кремния, ультрафиолетового облучения; эндогенных факторов (молекулярных структур, ассоциированных с повреждением (damage-associated molecular patterns — DAMPS)): АТФ, митохондриальной ДНК (мтДНК), кристаллов (например, кристаллов уратов), агрегатов (например, β-амилоида), глюкозы, жирных кислот, холестерина. Изменение концентрации ионов калия, ассоциированное с их эффлюксом, за счет повышения проницаемости клеточной мембраны для K+ и Na+ является общим ассоциированным эффектом действия различных агонистов NLRP3-инфламмасомы. Необходимо подчеркнуть, что уменьшение внутриклеточной концентрации ионов K+ является достаточным фактором для активации NLRP3-инфламмасомы. Ассоциированная с инфламмасомами каспаза-1, расщепляя проформы интерлейкина, способствует формированию активных форм IL-1β, IL-18, которые могут быть секретированы во внеклеточное пространство, где они индуцируют воспалительные эффекты. Так, IL-1β вызывает многочисленные биологические эффекты, в том числе усиливает экспрессию провоспалительных цитокинов (TNF-α, IL-6, IL-37, G-CSF, GM-CSF), молекул адгезии (ICAM-1, VCAM-1 и VEGF), ферментов, участвующих в генерации активных кислород- и азотсодержащих метаболитов и синтезе медиаторов воспаления (NADPH, iNOS, COX-2, фосфолипазы А2). Также IL-1β опосредует активацию нейтрофилов и способствует фагоцитозу патогенов. Внутриклеточный избыток активированной каспазы-1 может привести к особой гибели макрофагов и моноцитов — пироптозу, который сопровождается массивным высвобождением провоспалительных цитокинов и DAMP. Порообразующие токсины могут дестабилизировать лизофагосомы во время фагоцитоза золотистого стафилококка, что вызывает NLRP3-зависимую секрецию цитокинов и NLRP3-независимую гибель клеток. Протеин NLRC5 связывается с NLRP3 и усиливает секрецию цитокинов; NLRP7, связываясь с АТФ, способствует активации каспазы-1 в ответ на инфицирование Staphylococcus aureus [15, 20, 39, 72, 85]. Активация AIM2-инфламмасомы в иммуноцитах при стафилококковой инфекции происходит преимущественно при поражении центральной нервной системы [31].

NLRP3-инфламмасома

Во время стафилококковой инфекции триггерами NLRP3-инфламмасомы являются пороформирующие токсины: α-токсин, лейкоцидины A и B (LukAB) и лейкоцидин Пантона — Валентина (PVL) бактерий Staphylococcus aureus [38, 48, 71].

Токсины бактерий Staphylococcus aureus взаимодействуют со специфическими рецепторами клеток макроорганизма, фиксируются на поверхности мембраны и формируют поры, через которые высвобождаются ионы K+ и активируется катепсин B (cathepsin B — CTSB), который опосредует запрограммированный некроз и активацию NLRP3-инфламмасомы (рис. 3) [24, 72].

Robin R. Craven и соавт. [17] впервые показали, что α-гемолизин Staphylococcus aureus индуцирует NLRP3-инфламмасому в клетках культуры.

Альвеолярные макрофаги являются основной мишенью α-гемолизина бактерий Staphylococcus aureus. Данный α-гемолизин активирует NLRP3-инфламмасому в альвеолярных макрофагах как in vitro, так и in vivo. Интересно отметить, что активность α-гемолизина по отношению к другим типам клеток респираторного тракта может быть опосредована через NLRP3-независимые сигнальные пути. Нокаутные мыши Nlrp3–/–, лишенные протеина NLRP3, не полностью защищены от патогенного действия золотистого стафилококка, секретирующего α-гемолизин [48]. Ejiofor A.D. Ezekwe и соавт. [25] продемонстрировали, что для проявления активности α-гемолизина в эпителиальных и эндотелиальных клетках необходимо участие ADAM10. А в человеческих моноцитах протеин ADAM10 играет решающую роль в α-гемолизин-опосредованной активации NLRP3-инфламмасомы. Медикаментозная блокада взаимодействия ADAM10 с α-гемолизином приводит к снижению активации NLRP3-инфламмасомы и гибели моноцитов. Удаление протеина ADAM10 в иммуноцитах или глобальный дефицит протеина NLRP3, согласно данным экспериментальных исследований стафилококковой инфекции у мышей, сопровождаются снижением уровня летальности по сравнению с мышами дикого типа. В то же время удаление протеина ADAM10 в миелоидных клетках способствует повышению уровня бактериальной нагрузки [5].

Лейкоцидин LukAB является доминирующим токсином, который вызывает гибель человеческих фагоцитов во время стафилококковой инфекции [22]. Jason H. Melehani и соавт. [71] установили, что действие лейкоцидина LukAB Staphylococcus aureus достаточно для индукции такого уровня каспазы-1 и секреции IL-1 и IL-18 в CD14+ моноцитах, который может вызвать гибель клеток. Данные эффекты LukAB характеризуются зависимостью от связывания LukAB с его клеточным рецептором CD11b, которое приводит к активации NLRP3-инфламмасомы моноцитов. Значение LukAB в активации NLRP3-инфламмасомы при инфекции, вызванной Staphylococcus aureus, у человека, по мнению Jason H. Melehani и соавт. [71], вероятно, недооценено из-за данных, полученных при исследовании стафилококковой инфекции у мышей, клетки которых устойчивы к LukAB-опосредованному лизису. Лейкоцидин LukAB связывается с человеческим интегрином CD11b почти в 1000 раз активней, чем с мышиным CD11b [23].

Установлено, что PVL-чувствительные клетки первично связываются с субъединицей LukS-PV лейкоцидина Пантона — Валентина бактерий Staphylococcus aureus, а затем с субъединицей LukF-PV. Субъединица LukS-PV лейкоцидина PVL связывается с моноцитами, макрофагами и нейтрофилами, но не взаимодействует с лимфоцитами. Лейкоцидин PVL является сильным триггером NLRP3-инфламмасомы. Связывание лейкоцидина PVL с моноцитами и макрофагами приводит к высвобождению каспазо-1-зависимых провоспалительных цитокинов IL-1 и IL-18. Лейкоцидин PVL активирует NLRP3-инфламмасому миелоидных клеток. Специфическое ингибирование PVL-зависимой активации NLRP3-инфламмасомы значительно снижает вероятность развития последующего пироптоза [38].

Делеция гена Nlrp3 у мышей сопровождается улучшением клинического течения стафилококковой пневмонии, не оказывая влияния на уровень бактериальной нагрузки [48].

Высокая активность NLRP3-инфламмасомы приводит к развитию пироптоза, сопровождаемого гибелью клетки и выраженным поражением ткани легкого. Таким образом, медикаментозное ингибирование активности NLRP3-инфламмасомы может быть использовано в терапии тяжелой стафилококковой пневмонии. В частности, антигипергликемическое средство глибенкламид обладает NLRP3-ингибирующим действием [60].

NLRC5-инфламмасома

Молекула протеина NLRC5, принадлежащая к протеиновому субсемейству NLRC, содержит N-терминальный домен CARD, большой центральный домен NACHT и С-терминальный домен LRR, который характеризуется самой длинной аминокислотной последовательностью среди протеинов NLRC [99]. Протеин NLRC5, как и другие представители субсемейства NLRC, участвует в антибактериальной защите организма. Экспрессия NLRC5 отмечается в разнообразных типах клеток, в том числе в макрофагах, дендритных клетках, В-, Т-клетках и фибробластах. Экспрессию NLRC5 индуцирует IFN-g. Факторы вирулентности золотистого стафилококка, которые могли бы способствовать активации протеина NLRC5, до настоящего времени не идентифицированы. Показано, что нокаут NLRC5 в THP1-клетках (клетках линии человеческих моноцитов, полученных от пациента с острым моноцитарным лейкозом) сопровождается выраженным снижением уровня секреции IL-1 в ответ инфицирование золотистым стафилококком [18].

NLRP7-инфламмасома

АТФ-зависимый протеин NLRP7 участвует в различных пато- и физиологических процессах, в том числе в регуляции эмбрионального развития, процесса воспаления и в рекогниции микробных липопептидов [83]. Ген NLRP7 экспрессируется в моноцитах, Т- и B-клетках человека. Низкие концентрации протеина NLRP7 способствуют секреции IL-1β, а высокий уровень содержания NLRP7 ингибирует расщепление проформы IL-1β [42]. Протеин NLRP7 является сенсором ацилированных липопептидов бактерий Staphylococcus aureus. Нокаут NLRP7 в THP1 клетках проявляется низким уровнем Staphylococcus aureus индуцированной секреции IL-1β и увеличением количества бактерий, расположенных внутриклеточно, но не влияет на активность Staphylococcus aureus индуцированной гибели клеток [49]. В то же время гиперэкспрессия NLRP7 в THP1 клетках сочетается с увеличением Staphylococcus aureus индуцированной гибели клеток [83].

Конфликт интересов. Авторы заявляют об отсутствии какого-либо конфликта интересов при подготовке данной статьи.


Список литературы

1. Anas A. Role of CD14 in lung inflammation and infection / A. Anas, T. van der Poll, A.F. de Vos // Crit. Care. 2010; 14(2): 209. doi: 10.1186/cc8850.

2. Armbruster N.S. PSM Peptides of Staphylococcus aureus Activate the p38-CREB Pathway in Dendritic Cells, Thereby Modulating Cytokine Production and T Cell Priming / N.S. Armbruster, J.R. Richardson, J. Schreiner et al. // J. Immunol. 2016 Feb 1; 196(3): 1284-92. doi: 10.4049/jimmunol.1502232.

3. Armbruster N.S. Staphylococcus aureus PSM peptides induce tolerogenic dendritic cells upon treatment with ligands of extracellular and intracellular TLRs / N.S. Armbruster, J.R. Richardson, J. Schreiner et al. // Int. J. Med. Microbiol. 2016 Dec; 306(8): 666-674. doi: 10.1016/j.ijmm.2016.09.002.

4. Barbar S.D. Mechanical Ventilation Alters the Development of Staphylococcus aureus Pneumonia in Rabbit / S.D. Barbar, L.A. Pauchard, R. Bruyère et al. // PLoS One. 2016 Jul 8; 11(7): e0158799. doi: 10.1371/journal.pone.0158799.

5. Becker R.E. Tissue-specific patterning of host innate immune responses by Staphylococcus aureus α-toxin / R.E. Becker, B.J. Berube, G.R. Sampedro et al. // J. Innate Immun. 2014; 6(5): 619-31. doi: 10.1159/000360006.

6. Bekeredjian-Ding I. The Innate Immune Response Against Staphylococcus aureus / I. Bekeredjian-Ding, C. Stein, J. Uebele // Curr. Top. Microbiol. Immunol. 2015 Dec 15: 1-34. doi: 10.1007/82_2015_5004

7. Bergstrоm B. TLR8 Senses Staphylococcus aureus RNA in Human Primary Monocytes and Macrophages and Induces IFN-β Production via a TAK1-IKKβ-IRF5 Signaling Pathway / B. Bergstrоm, M.H. Aune, J.A. Awuh et al. // J. Immunol. 2015 Aug 1; 195(3): 1100-11. doi: 10.4049/jimmunol.1403176.

8. Bhan U. TLR9 is required for protective innate immunity in Gram-negative bacterial pneumonia: role of dendritic cells / U. Bhan, N.W. Lukacs, J.J. Osterholzer et al. // J. Immunol. 2007 Sep 15; 179(6): 3937-46. doi: 10.4049/jimmunol.179.6.3937.

9. Bjerkan L. Multiple Functions of the New Cytokine-Based Antimicrobial Peptide Thymic Stromal Lymphopoietin (TSLP) / L. Bjerkan, A. Sonesson, K. Schenck // Pharmaceuticals (Basel). 2016 Jul 5; 9(3). pii: E41. doi: 10.3390/ph9030041.

10. Byndloss M.X. NOD1 and NOD2: New Functions Linking Endoplasmic Reticulum Stress and Inflammation / M.X. Byndloss, A.M. Keestra-Gounder, A.J. Bäumler, R.M. Tsolis // DNA Cell Biol. 2016 Jul; 35(7): 311-3. doi: 10.1089/dna.2016.3396.

11. Caruso R. NOD1 and NOD2: signaling, host defense, and inflammatory disease / R. Caruso, N. Warner, N. Inohara, G. Núñez // Immunity. 2014 Dec 18; 41(6): 898-908. doi: 10.1016/j.immuni.2014.12.010.

12. Chamaillard M. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation / M. Chamaillard, S.E. Girardin, J. Viala, D.J. Philpott // Cell Microbiol. 2003 Sep; 5(9): 581-92. doi: 10.1046/j.1462-5822.2003.00304.x.

13. Chantratita N. TLR4 genetic variation is associated with inflammatory responses in Gram-positive sepsis / N. Chantratita, S. Tandhavanant, S. Seal et al. // Clin. Microbiol. Infect. 2017 Jan; 23(1): 47.e1-47.e10. doi: 10.1016/j.cmi.2016.08.028.

14. Chen Y.G. Control of Methicillin-Resistant Staphylococcus aureus Pneumonia Utilizing TLR2 Agonist Pam3CSK4 / Y.G. Chen, Y. Zhang, L.Q. Deng et al. // PLoS One. 2016 Mar 14; 11(3): e0149233. doi: 10.1371/journal.pone.0149233.

15. Choubey D. Absent in Melanoma 2 proteins in SLE / D. Choubey, R. Panchanathan // Clin. Immunol. 2017 Jan 3; 176: 42-48. doi: 10.1016/j.clim.2016.12.011.

16. Conejeros I. Effect of the synthetic Toll-like receptor ligands LPS, Pam3CSK4, HKLM and FSL-1 in the function of bovine polymorphonuclear neutrophils / I. Conejeros, A.J. Gibson, D. Werling et al. // Dev. Comp. Immunol. 2015 Oct; 52(2): 215-25. doi: 10.1016/j.dci.2015.05.012.

17. Craven R.R. Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells / R.R. Craven, X. Gao, I.C. Allen et al. // PLoS One. 2009 Oct 14; 4(10): e7446. doi: 10.1371/journal.pone.0007446.

18. Davis B.K. Cutting edge: NLRC5-dependent activation of the inflammasome / B.K. Davis, R.A. Roberts, M.T. Huang et al. // J. Immunol. 2011 Feb 1; 186(3): 1333-7. doi: 10.4049/jimmunol.1003111.

19. Dempsey A. Innate immune recognition of DNA: A recent history / A. Dempsey, A.G. Bowie // Virology. 2015 May; 479-480: 146-52. doi: 10.1016/j.virol.2015.03.013.

20. Dinarello C.A. A clinical perspective of IL-1β as the gatekeeper of inflammation // Eur. J. Immunol. 2011 May; 41(5): 1203-17. doi: 10.1002/eji.201141550.

21. Duggan J.M. Synergistic interactions of TLR2/6 and TLR9 induce a high level of resistance to lung infection in mice / J.M. Duggan, D. You, J.O. Cleaver et al. // J. Immunol. 2011 May 15; 186(10): 5916-26. doi: 10.4049/jimmunol.1002122.

22. DuMont A.L. Identification of a crucial residue required for Staphylococcus aureus LukAB cytotoxicity and receptor recognition / A.L. DuMont, P. Yoong, X. Liu et al. // Infect. Immun. 2014 Mar; 82(3): 1268-76. doi: 10.1128/IAI.01444-13.

23. DuMont A.L. Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1 / A.L. DuMont, P. Yoong, C.J. Day et al. // Proc. Natl. Acad. Sci USA. 2013 Jun 25; 110(26): 10794-9. doi: 10.1073/pnas.1305121110.

24. DuMont A.L. Cell targeting by the Staphylococcus aureus pore-forming toxins: it's not just about lipids / A.L. DuMont, V.J. Torres // Trends Microbiol. 2014 Jan; 22(1): 21-7. doi: 10.1016/j.tim.2013.10.004.

25. Ezekwe E.A. Jr. ADAM10 Cell Surface Expression but Not Activity Is Critical for Staphylococcus aureus α-Hemolysin-Mediated Activation of the NLRP3 Inflammasome in Human Monocytes / E.A. Jr Ezekwe, C. Weng, J.A. Duncan // Toxins (Basel). 2016 Mar 30; 8(4): 95. doi: 10.3390/toxins8040095.

26. Fioravanti J. Scavenger receptor class B, type I: a promising immunotherapy target / J. Fioravanti, J. Medina-Echeverz, P. Berraondo // Immunotherapy. 2011 Mar; 3(3): 395-406. doi: 10.2217/imt.10.104.

27. Fisher J.F. Host-guest chemistry of the peptidoglycan / J.F. Fisher, S. Mobashery // J. Med. Chem. 2010 Jul 8; 53(13): 4813-29. doi: 10.1021/jm100086u.

28. Fournier B. The function of TLR2 during staphylococcal diseases // Front. Cell Infect. Microbiol. 2013 Jan 4; 2: 167. doi: 10.3389/fcimb.2012.00167.

29. Fournier B. Recognition of Staphylococcus aureus by the innate immune system / B. Fournier, D.J. Philpott // Clin. Microbiol. Rev. 2005 Jul; 18(3): 521-40. doi: 10.1128/CMR.18.3.521-540.2005.

30. González-Zorn B. Bacterial and host factors implicated in nasal carriage of methicillin-resistant Staphylococcus aureus in mice / B. González-Zorn, J.P. Senna, L. Fiette et al. // Infect. Immun. 2005 Mar; 73(3): 1847-51. doi: 10.1128/IAI.73.3.1847-1851.2005.

31. Hanamsagar R. Critical role for the AIM2 inflammasome during acute CNS bacterial infection / R. Hanamsagar, A. Aldrich, T. Kielian // J. Neurochem. 2014 May; 129(4): 704-11. doi: 10.1111/jnc.12669.

32. Hattar K. Lipoteichoic acid (LTA) from Staphylococcus aureus stimulates human neutrophil cytokine release by a CD14-dependent, Toll-like-receptor-independent mechanism: Autocrine role of tumor necrosis factor-[alpha] in mediating LTA-induced interleukin-8 generation / K. Hattar, U. Grandel, A. Moeller et al. // Crit. Care Med. 2006 Mar; 34(3): 835-41. PMID: 16521278.

33. Haziot A. CD14 plays no major role in shock induced by Staphylococcus aureus but down-regulates TNF-alpha production / A. Haziot, N. Hijiya, K. Schultz et al. // J. Immunol. 1999 Apr 15; 162(8): 4801-5. PMID: 10202023.

34. Hermann C. Cytokine induction by purified lipoteichoic acids from various bacterial species--role of LBP, sCD14, CD14 and failure to induce IL-12 and subsequent IFN-gamma release / C. Hermann, I. Spreitzer, N.W. Schröder et al. // Eur. J. Immunol. 2002 Feb; 32(2): 541-51. doi: 10.1002/1521-4141(200202)32: 2< 541: AID-IMMU541> 3.0.CO; 2-P.

35. Hilmi D. Heterogeneity of host TLR2 stimulation by Staphylocoocus aureus isolates / D. Hilmi, M. Parcina, D. Stollewerk et al. // PLoS One. 2014 May 8; 9(5): e96416. doi: 10.1371/journal.pone.0096416.

36. Hoebe K. CD36 is a sensor of diacylglycerides / K. Hoebe, P. Georgel, S. Rutschmann et al. // Nature. 2005 Feb 3; 433(7025): 523-7. doi: 10.1038/nature03253.

37. Holm C.K. DNA recognition in immunity and disease / C.K. Holm, S.R. Paludan, K.A. Fitzgerald // Curr. Opin Immunol. 2013 Feb; 25(1): 13-8. doi: 10.1016/j.coi.2012.12.006.

38. Holzinger D. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome / D. Holzinger, L. Gieldon, V. Mysore et al. // J. Leukoc Biol. 2012 Nov; 92(5): 1069-81. doi: 10.1189/jlb.0112014.

39. Howrylak J.A. Inflammasomes: Key Mediators of Lung Immunity / J.A. Howrylak, K. Nakahira // Ann. Rev. Physiol. 2017 Feb 10; 79: 471-494. doi: 10.1146/annurev-physiol-021115-105229.

40. Inden K. Toll-like receptor 4-dependent activation of myeloid dendritic cells by leukocidin of Staphylococcus aureus / K. Inden, J. Kaneko, A. Miyazato et al. // Microbes Infect. 2009 Feb; 11(2): 245-53. doi: 10.1016/j.micinf.2008.11.013.

41. Irvine K.L. The molecular basis for recognition of bacterial ligands at equine TLR2, TLR1 and TLR6 / K.L. Irvine, L.J. Hopkins, M. Gangloff, C.E. Bryant // Vet. Res. 2013 Jul 4; 44: 50. doi: 10.1186/1297-9716-44-50.

42. Janowski A.M. Atypical Inflammasomes / A.M. Janowski, F.S. Sutterwala // Methods Mol. Biol. 2016; 1417: 45-62. doi: 10.1007/978-1-4939-3566-6_2.

43. Jiang K.F. Polydatin ameliorates Staphylococcus aureus-induced mastitis in mice via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB pathway / K.F. Jiang, G. Zhao, G.Z. Deng et al. // Acta Pharmacol. Sin. 2017 Feb; 38(2): 211-222. doi: 10.1038/aps.2016.123.

44. Juárez-Verdayes M.A. Peptidoglycan and muramyl dipeptide from Staphylococcus aureus induce the expression of VEGF-A in human limbal fibroblasts with the participation of TLR2-NFκB and NOD2-EGFR / M.A. Juárez-Verdayes, S. Rodríguez-Martínez., M.E. Cancino-Diaz, J.C. Cancino-Diaz // Graefes Arch. Clin. Exp. Ophthalmol. 2013 Jan; 251(1): 53-62. doi: 10.1007/s00417-012-2130-5.

45. Kang S.S. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2 / S.S. Kang, J.R. Sim, C.H. Yun et al. // Arch. Pharm. Res. 2016 Nov; 39(11): 1519-1529.

46. Kapetanovic R. Contribution of NOD2 to lung inflammation during Staphylococcus aureus-induced pneumonia / R. Kapetanovic, G. Jouvion, C. Fitting et al. // Microbes Infect. 2010 Sep; 12(10): 759-67. doi: 10.1016/j.micinf.2010.05.003.

47. Kapetanovic R. Contribution of phagocytosis and intracellular sensing for cytokine production by Staphylococcus aureus-activated macrophages / R. Kapetanovic, M.A. Nahori, V. Balloy et al. // Infect. Immun. 2007 Feb; 75(2): 830-7. doi: 10.1128/IAI.01199-06.

48. Kebaier C. Staphylococcus aureus α-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome / C. Kebaier, R.R. Chamberland, I.C. Allen et al. // J. Infect. Dis. 2012 Mar 1; 205(5): 807-17. doi: 10.1093/infdis/jir846.

49. Khare S. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages / S. Khare, A. Dorfleutner, N.B. Bryan et al. // Immunity. 2012 Mar 23; 36(3): 464-76. doi: 10.1016/j.immuni.2012.02.001.

50. Kim M.R. Staphylococcus aureus-derived extracellular vesicles induce neutrophilic pulmonary inflammation via both Th1 and Th17 cell responses / M.R. Kim, S.W. Hong, E.B. Choi et al. // Allergy. 2012 Oct; 67(10): 1271-81. doi: 10.1111/all.12001.

51. Knuefermann P. Toll-like receptor 2 mediates Staphylococcus aureus-induced myocardial dysfunction and cytokine production in the heart / P. Knuefermann, Y. Sakata, J.S. Baker et al. // Circulation. 2004 Dec 14; 110(24): 3693-8. doi: 10.1161/01.CIR.0000143081.13042.04.

52. Kobayashi K.S. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract / K.S. Kobayashi, M. Chamaillard, Y. Ogura et al. // Science. 2005 Feb 4; 307(5710): 731-4. doi: 10.1126/science.1104911.

53. Kretschmer D. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus / D. Kretschmer, A.K. Gleske, M. Rautenberg et al. // Cell Host Microbe. 2010 Jun 25; 7(6): 463-73. doi: 10.1016/j.chom.2010.05.012.

54. Kretschmer D. Lipoprotein immunoproteomics question the potential of Staphylococcus aureus TLR2 agonists as vaccine antigens / D. Kretschmer, D. Hanzelmann, A. Peschel // Proteomics. 2016 Oct; 16(20): 2603-2604. doi: 10.1002/pmic.201600351.

55. Krüger A. Human TLR8 senses UR/URR motifs in bacterial and mitochondrial RNA / A. Krüger, M. Oldenburg, C. Chebrolu et al. // EMBO Rep. 2015 Dec; 16(12): 1656-63. doi: 10.15252/embr.201540861.

56. Kumagai Y. TLR9 as a key receptor for the recognition of DNA / Y. Kumagai, O. Takeuchi, S. Akira // Adv. Drug Deliv. Rev. 2008 Apr 29; 60(7): 795-804. doi: 10.1016/j.addr.2007.12.004.

57. Kurokawa K. Biochemical characterization of evasion from peptidoglycan recognition by Staphylococcus aureus D-alanylated wall teichoic acid in insect innate immunity / K. Kurokawa, J.H. Gong, K.H. Ryu et al. // Dev. Comp. Immunol. 2011 Aug; 35(8): 835-9. doi: 10.1016/j.dci.2011.03.001.

58. Kurokawa K. Environment-mediated accumulation of diacyl lipoproteins over their triacyl counterparts in Staphylococcus aureus / K. Kurokawa, M.S. Kim, R. Ichikawa еt al. // J. Bacteriol. 2012 Jul; 194(13): 3299-306. doi: 10.1128/JB.00314-12.

59. Kurokawa K. The Triacylated ATP Binding Cluster Transporter Substrate-binding Lipoprotein of Staphylococcus aureus Functions as a Native Ligand for Toll-like Receptor 2 / K. Kurokawa, H. Lee, K.B. Roh et al. // J. Biol. Chem. 2009 Mar 27; 284(13): 8406-11. doi: 10.1074/jbc.M809618200.

60. Lamkanfi M. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome / M. Lamkanfi, J.L. Mueller, A.C. Vitari et al. // J. Cell Biol. 2009 Oct 5; 187(1): 61-70. doi: 10.1083/jcb.200903124.

61. Lee I.T. Resveratrol inhibits Staphylococcus aureus-induced TLR2/MyD88/NF-κB-dependent VCAM-1 expression in human lung epithelial cells / I.T. Lee, C.C. Lin, C.K Hsu. et al. // Clin. Sci (Lond). 2014 Sep; 127(6): 375-90. doi: 10.1042/CS20130816.

62. Leech J.M. IL-10 Plays Opposing Roles during Staphylococcus aureus Systemic and Localized Infections / J.M. Leech, K.A. Lacey, M.E. Mulcahy et al. // J. Immunol. 2017 Feb 6. pii: 1601018. doi: 10.4049/jimmunol.1601018.

63. Leissinger M. Investigating the role of nucleotide-binding oligomerization domain-like receptors in bacterial lung infection / M. Leissinger, R. Kulkarni, R.L. Zemans et al. // Am. J. Respir. Crit. Care Med. 2014 Jun 15; 189(12): 1461-8. doi: 10.1164/rccm.201311-2103PP.

64. Lembo A. Differential contribution of Toll-like receptors 4 and 2 to the cytokine response to Salmonella enterica serovar Typhimurium and Staphylococcus aureus in mice / A. Lembo, C. Kalis, C.J. Kirschning et al. // Infect. Immun. 2003 Oct; 71(10): 6058-62. doi: 10.1128/IAI.71.10.6058-6062.2003.

65. Liu B. Involvement of RP105 and toll-like receptors in the activation of mouse peritoneal macrophages by Staphylococcus aureus / B. Liu, Y. Fu, S. Feng et al. // Scand. J. Immunol. 2013 Jul; 78(1): 8-16. doi: 10.1111/sji.12050.

66. Luecke S. Innate recognition of alphaherpesvirus DNA / S. Luecke, S.R. Paludan // Adv. Virus Res. 2015; 92: 63-100. doi: 10.1016/bs.aivir.2014.11.003.

67. Lupfer C. Unsolved Mysteries in NLR Biology / C. Lupfer, T.D. Kanneganti // Front Immunol. 2013 Sep 17; 4: 285. doi: 10.3389/fimmu.2013.00285.

68. Maharana J. Structural and functional insights into CARDs of zebrafish (Danio rerio) NOD1 and NOD2, and their interaction with adaptor protein RIP2 / J. Maharana, B. Dehury, J.R. Sahoo et al. // Mol. Biosyst. 2015 Aug; 11(8): 2324-36. doi: 10.1039/c5mb00212e.

69. McLaughlin R.A. Interleukin-1beta-induced growth enhancement of Staphylococcus aureus occurs in biofilm but not planktonic cultures / R.A. McLaughlin, A.J. Hoogewerf // Microb. Pathog. 2006 Aug-Sep; 41(2-3): 67-79. doi: 10.1016/j.micpath.2006.04.005.

70. Meduri G.U. Cytokines IL-1beta, IL-6, and TNF-alpha enhance in vitro growth of bacteria / G.U. Meduri, S. Kanangat, J. Stefan, E. Tolley, D. Schaberg // Am. J. Respir. Crit. Care Med. 1999 Sep; 160(3): 961-7. doi: 10.1164/ajrccm.160.3.9807080.

71. Melehani J.H. Staphylococcus aureus Leukocidin A/B (LukAB) Kills Human Monocytes via Host NLRP3 and ASC when Extracellular, but Not Intracellular / J.H. Melehani, D.B. James, A.L. DuMont, V.J. Torres, J.A. Duncan // PLoS Pathog. 2015 Jun 12; 11(6): e1004970. doi: 10.1371/journal.ppat.1004970.

72. Melehani J.H. Inflammasome Activation Can Mediate Tissue-Specific Pathogenesis or Protection in Staphylococcus aureus Infection / J.H. Melehani, J.A. Duncan // Curr. Top. Microbiol. Immunol. 2016; 397: 257-82. doi: 10.1007/978-3-319-41171-2_13.

73. Miller L.S. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus / L.S. Miller, R.M. O'Connell, M.A. Gutierrez et al. // Immunity. 2006 Jan; 24(1): 79-91. doi: 10.1016/j.immuni.2005.11.011.

74. Mohamed W. TLR9 mediates S. aureus killing inside osteoblasts via induction of oxidative stress / W. Mohamed, E. Domann, T. Chakraborty et al. // BMC Microbiol. 2016 Oct 3; 16(1): 230. PMID: 27716055.

75. Mullaly S.C. The role of TLR2 in vivo following challenge with Staphylococcus aureus and prototypic ligands / S.C. Mullaly, P. Kubes // J. Immunol. 2006 Dec 1; 177(11): 8154-63.doi: 10.4049/jimmunol.177.11.8154.

76. Negrini T.C. Salivary epithelial cells as model to study immune response against cutaneous pathogens / T.C. Negrini, R.A. Arthur, R.A. Waeiss et al. // Clin. Transl. Sci. 2014 Feb; 7(1): 48-51. doi: 10.1111/cts.12113.

77. Nguyen M.T. The νSaα Specific Lipoprotein Like Cluster (lpl) of S. aureus USA300 Contributes to Immune Stimulation and Invasion in Human Cells / M.T. Nguyen, B. Kraft, W. Yu et al. // PLoS Pathog. 2015 Jun 17; 11(6): e1004984. doi: 10.1371/journal.ppat.1004984.

78. Niebuhr M. Staphylococcal α-toxin induces a functional upregulation of TLR-2 on human peripheral blood monocytes / M. Niebuhr, K. Schorling, A. Heratizadeh, T. Werfel // Exp. Dermatol. 2015 May; 24(5): 381-3. doi: 10.1111/exd.12674.

79. Nilsen N.J. Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling: role of CD14 and CD36 / N.J. Nilsen, S. Deininger, U. Nonstad et al. // J. Leukoc Biol. 2008 Jul; 84(1): 280-91. doi: 10.1189/jlb.0907656.

80. Parker D. Staphylococcus aureus induces type I IFN signaling in dendritic cells via TLR9 / D. Parker, A. Prince // J. Immunol. 2012 Oct 15; 189(8): 4040-6. doi: 10.4049/jimmunol.1201055.

81. Peschel A., Otto M. Phenol-soluble modulins and staphylococcal infection / A. Peschel, M. Otto // Nat. Rev. Microbiol. 2013 Oct; 11(10): 667-73. doi: 10.1038/nrmicro3110.

82. Pietrocola G. Toll-like receptors (TLRs) in innate immune defense against Staphylococcus aureus / G. Pietrocola, C.R. Arciola, S. Rindi et al. // Int. J. Artif. Organs. 2011 Sep; 34(9): 799-810. doi: 10.5301/ijao.5000030.

83. Radian A.D. ATP binding by NLRP7 is required for inflammasome activation in response to bacterial lipopeptides / A.D. Radian, S. Khare, L.H. Chu et al. // Mol. Immunol. 2015 Oct; 67(2 Pt B): 294-302. doi: 10.1016/j.molimm.2015.06.013.

84. Siegel S.J. Mechanisms of Bacterial Colonization of the Respiratory Tract / S.J. Siegel, J.N. Weiser // Ann. Rev. Microbiol. 2015; 69: 425-44. doi: 10.1146/annurev-micro-091014-104209.

85. Sokolovska A. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function / A. Sokolovska, C.E., Becker W.K. Ip et al. // Nat. Immunol. 2013 Jun; 14(6): 543-53. doi: 10.1038/ni.2595.

86. Sugitharini V. TLR2 and TLR4 co-activation utilizes distinct signaling pathways for the production of Th1/Th2/Th17 cytokines in neonatal immune cells / V. Sugitharini, P. Shahana, A. Prema, E. Berla Thangam // Cytokine. 2016 Sep; 85: 191-200. doi: 10.1016/j.cyto.2016.06.024.

87. Sun Y. Staphylococcus aureus-induced corneal inflammation is dependent on Toll-like receptor 2 and myeloid differentiation factor 88 / Y. Sun, A.G. Hise, C.M. Kalsow, E. Pearlman // Infect. Immun. 2006 Sep; 74(9): 5325-32. doi: 10.1128/IAI.00645-06.

88. Szweda P. Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus / P. Szweda, M. Schielmann, R. Kotlowski et al. // Appl. Microbiol. Biotechnol. 2012 Dec; 96(5): 1157-74. doi: 10.1007/s00253-012-4484-3.

89. Takeuchi O. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection / O. Takeuchi, K. Hoshino, S. Akira // J. Immunol. 2000 Nov 15; 165(10): 5392-6. doi: 10.4049/jimmunol.165.10.5392.

90. van der Meer A.J. Toll-like receptor 9 enhances bacterial clearance and limits lung consolidation in murine pneumonia caused by methicillin resistant Staphylococcus aureus / A.J. van der Meer, A. Achouiti, A. van der Ende et al. // Mol. Med. 2016 Jun 24; 22. doi: 10.2119/molmed.2015.00242.

91. von Eiff C. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group / C. von Eiff, K. Becker, K. Machka, H. Stammer, G. Peters // N. Engl. J. Med. 2001 Jan 4; 344(1): 11-6. doi: 10.1056/NEJM200101043440102.

92. Vu A.T. Staphylococcus aureus membrane and diacylated lipopeptide induce thymic stromal lymphopoietin in keratinocytes through the Toll-like receptor 2-Toll-like receptor 6 pathway / A.T. Vu, T. Baba, X. Chen et al. // J. Allergy Clin. Immunol. 2010 Nov; 126(5): 985-93, 993.e1-3. doi: 10.1016/j.jaci.2010.09.002.

93. Wang R. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA / R. Wang, K.R. Braughton, D. Kretschmer et al. // Nat. Med. 2007 Dec; 13(12): 1510-4. doi: 10.1038/nm1656.

94. Wiese K.M. The Role of NOD-like Receptors in Pulmonary Infection / K.M. Wiese, B.M. Coates, K.M. Ridge // Am. J. Respir. Cell. Mol. Biol. 2017 Feb 3. doi: 10.1165/rcmb.2016-0375TR.

95. Wolf A.J. Phagosomal degradation increases TLR access to bacterial ligands and enhances macrophage sensitivity to bacteria / A.J. Wolf, A. Arruda, C.N. Reyes et al. // J. Immunol. 2011 Dec 1; 187(11): 6002-10. doi: 10.4049/jimmunol.1100232.

96. Wu H.M. CpG-ODN promotes phagocytosis and autophagy through JNK/P38 signal pathway in Staphylococcus aureus-stimulated macrophage / H.M. Wu, J. Wang, B. Zhang et al. // Life Sci. 2016 Sep 15; 161: 51-9. doi: 10.1016/j.lfs.2016.07.016.

97. Wu J. Staphylococcus aureus induces TGF-β1 and bFGF expression through the activation of AP-1 and NF-κB transcription factors in bovine mammary gland fibroblasts / J. Wu, Y. Ding, Y. Bi et al. // Microb. Pathog. 2016 Jun; 95: 7-14. doi: 10.1016/j.micpath.2016.02.013.

98. Wu J. Innate immune sensing and signaling of cytosolic nucleic acids / J. Wu, Z.J. Chen // Ann. Rev. Immunol. 2014; 32: 461-88. doi: 10.1146/annurev-immunol-032713-120156.

99. Yao Y. Expression regulation and function of NLRC5 / Y. Yao, Y. Qian // Protein Cell. 2013 Mar; 4(3): 168-75. doi: 10.1007/s13238-012-2109-3.

100. Zhu Y.M. Protective effect of CpG-DNA against mastitis induced by Staphylococcus aureus infection in a rat model / Y.M. Zhu, J.F. Miao, H.J. Fan, S.X. Zou, W.H. Chen // Int. Immunopharmacol. 2007 Apr; 7(4): 435-43. PMID: 17321466.

101. Zivkovic A. TLR 2 and CD14 mediate innate immunity and lung inflammation to staphylococcal Panton-Valentine leukocidin in vivo / A. Zivkovic, O. Sharif, K. Stich et al. // J. Immunol. 2011 Feb 1; 186(3): 1608-17. doi: 10.4049/jimmunol.1001665.


Вернуться к номеру