Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



UkrainePediatricGlobal

UkrainePediatricGlobal

Журнал «Здоровье ребенка» 2 (61) 2015

Вернуться к номеру

Epiphyseal hormone melatonin and chronic kidney disease (review of literature and our own research)

Авторы: Kaladze NN, Slobodian EI, Govdalyuk AL — Crimea State Medical University named after S.I.Georgievskogo, Simferopol

Рубрики: Педиатрия/Неонатология

Разделы: Клинические исследования

Версия для печати

In the last decade it has been proven that the reduction of melatonin secretion at night time can be linked to a number of pathologies of the human body. Melatonin - the main hormone of the pineal gland performing molecular neuro-endocrine-immune signal coordination of biological processes in living organisms. The main physiological functions of melatonin are biorythmological, thermoregulatory, antioxidant, immunomodulatory, anti-stress effects and regulation of puberty. It mediates pluripotent protection of organs and tissues, has anti-inflammatory, antihypertensive, antiapoptotic and anti-reconstruction action. The daily periodicity of symptoms such as sleep disturbances, nocturia, severe pastosity in the morning, frequent urination in the morning are observed in patients with chronic kidney disease (CKD). Greater frequency of exacerbations in the autumn-spring period suggests seasonal periodicity. Both suggesting the involvement of functional changes in the activity of the pineal gland in the formation and progression of symptoms of CKD. The structure of biorhythms of renal function reflects the stages of development of the pathological process in the kidneys. The stronger pathological process, the more pronounced circadian rhythm violations. Melatonin is a universal endogenous adaptogen. It regulates homeostasis in accordance with changes in the environment and exposure of pathogenic factors on the body. Numerous experimental and clinical studies presented in this article have been proven undeniable influence of the pineal gland and its hormone melatonin on renal functional features. My own study had 112 children with CKD stage I-II. The sickness progressed during chronic obstructive pyelonephritis (CP). The children were aged 6 to 16. The were more females than males. The clinical history and laboratory data confirmed the state of clinical and laboratory remission in all patients. The diagnosis is based on common criteria in accordance with the ICD-10 coding. The control group consisted of 15 healthy children of the same age and gender. The complex laboratory investigations included the traditionally accepted in the nephro-urological practice examination. In addition the production of melatonin was determined by excretion of its main metabolite 6-sulfatoxymelatonin (aMT6s). It was collected at night (6:00 AM) and day (6:00 PM) urine samples. The results showed a disruption in circadian rhythm and quantative production of melatonin. The lowest concentration of melatonin occurs at approximately 4 o'clock in the day , the highest at 2-4 o'clock in the morning. The 80-90% of melatonin is excreted in the urine as metabolite aMT6s. Therefore, it's maximum and minimum concentration can be measured 2-4 hours later in urine. In order to determine the peak of maximum and minimum concentrations of urinary aMT6s, the urine collection was performed at 6 o’clock at the morning (6:00 AM) and 6 o’clock at night (6:00 PM). The selected time was completely comfortable for the patients. It does not violate their schedule for sleep and wakefulness. Studies have shown that in patients with CP the changes of excretion of aMT6s are heterogeneous. In children with CP in the stage rack clinical and laboratory remission (68.3%), the peak levels of urinary aMT6s matched the intact correct rhythm of melatonin secretion. They did not differ from those of healthy children. With increasing the duration of bacterio-inflammatory renal disease, frequency of exacerbations, reduction of functional parameters we observed a decrease in nocturnal peak of the aMT6s and increase in daily peak. This is an indicator of increasing the production of melatonin by extrapineal sources - a compensatory reaction due to the suppression of melatonin production by the pineal gland. There was an inverse correlation relationship of urinary aMT6s with IL-17 and the main profibrotic cytokine TGF- β1. TGF- β1 has numerous inflammatory and hematopoietic effects on epithelial, endothelial cells, fibroblasts. It has pathogenetic relation to the development of chronic inflammatory diseases. It has, on the contrary, a positive correlation with a anti-inflammatory cytokine IL-4. In this study, the peak concentration of urinary aMT6s had significant differences in patients with first and second stages of CKD. These differences were observed during the day and at night (p <0.001). The value of glomerular filtration rate (GFR) was determined by Schwartz formula. It was found the direct dependence of GFR and night values of urinary aMT6s. Most noticeable changes in melatonin production were demonstrated in patients with clinical manifestation of desynchronization process of urine formation - nocturia. Almost all of the children in this group were characterized by fatigue in school, physical and psycho-emotional exhaustion, drowsiness. Most of the children had a nap, regardless of age. Syndrome of chronic intoxication has a negative impact on the regulation of the sleep-wake rhythm and leads to a pronounced inversion rhythm of melatonin secretion. Also it aggravates the clinical manifestations of CP. Thus, these studies clearly reveal a violation of the quantitative production and circadian rhythm of melatonin secretion in patients with CKD. Children are no exception. Perhaps these changes can be regarded as one of the modifiable risk factors of debut and progression of CKD and certainly needs further study and discussion.


Список литературы

1. Borilin J, Zhang LS, Calinescu AA. Circadian regulation of pineal gland rhythmicty. Mol Cell Endocrinol. 2012;349(1):13-9. 
2. Popovich I.G. 50 let melatoninu: itogi i perspektivy issledovanij. Uspehi gerontologii. 2008; 21, (2): S. 342-344. 
3. Anisimov V.N. Melatonin: rol' v organizme, primenenie v klinike. SPb.: Sistema, 2007. 40 s. 
4. Arushanyan E.B. Ogranichenie okislitel'nogo stressa kak osnovnaya prichina universal'nyh zashhitnyh svojstv melatonina. Eksper. i klin. farmakol. 2012; 75 (4): 44–49. 
5. Arushanyan, E. B. Bejer Je. V. Vremennaya organizaciya deyatel'nosti immunnoj  sistemy i uchastie v nej epifiza. Uspehi fiziol. nauk. 2006; 37: S. 3–10. 
6. Arushanyan E.B. Protivovospalitel'naya aktivnost' melatonina i glyukokortikoidnye gormony. Medicinskij vestnik severnogo Kavkaza. 2013; 8 (4): 99-104.
7. Bulyk R.E., Zamorskij I.I., Pishak V.P. Uchastie peptidov shishkovidnoj zhelezy v obespechenii funkcij fotoperiodicheskoj sistemy golovnogo mozga i pochek (obzor literatury i sobstvennye issledovaniya). Bukovyns'kyy medychnyy vicnyk. 2012; 16 (3) Chast' 2: 67–71.
8. Arushanyan E.B. Hronofarmakologiya. Stavropol': StGMA, 2005: 575 s.
9. Bonny O, Vinciguerra M,  Gumz M L,  Mazzoccoli G Molecular bases of circadian rhythmicity in renal physiology and pathology. Nephrol Dial Transplant. 2013; 28(10): 2421-31.
10. Pons M, Cambar J, Waterhouse JM. Renal hemodynamic mechanisms and blood pressure rhythms. Ann N Y Acad Sci. 1996; 783: 95-112.
11. Fiziologiya / pod red. chlena-korrespondenta NAPN Ukrainy, professora V. G. Shevchuka, - Vinnica: Novaya kniga, 2012: 448 s. 
12. Peleshhuk A.P. Mel'man N.Ya., Taran A.I. Sutochnyj ritm nekotoryh pokazatelej deyatel'nosti pochek u bol'nyh ostrym glomerulonefritom. Terapevt. arh.1973; 5: S. 78-81.
13. Firsov D, Bonny O. Circadian regulation of renal function.Kidney Int. 2010; 78: 640–645. 
14. Stow LR, Gumz ML. The circadian clock in the kidney. J Am Soc Nephrol 2011; 22: 598–604.
15. Hil'debrandt G., Mozer M., Lehofer M. Hronobiologiya i hronomedicina. M.: Arnebija, 2006: 144 s.
16. Buijsen JGM, van Acker BAC, Koomen GC et al. Circadian rhythm of glomerular filtration rate in patients after kidney transplantation. Nephrol Dial Transplant. 1994; 9 (9): 1330-1333.
17. Bryuhanov V.M., Zvereva A.Ya. Rol' pochki v regulyacii sutochnyh ritmov organizma. Nefrologiya. 2010; 14 (3): 17-31.
18. Negoro Н, Kanematsu А, Yoshimura К, Ogawa О hronobiology of Micturition: Putative Role of the Circadian Clock The Gournal of urology. 2013; 190 (3): 843–849. 
19. Mészáros К, Pruess L , Szabó А J, Gondan M, Ritz E, Schaefer F.  Development of the circadian clockwork in the kidney. Kidney International. 2014; 86: 915–922. 
20. Tokonami N, Mordasini D, Pradervand S, Centeno G, Jouffe C, Maillard M, Bonny O, Gachon F, Gomez RA, Sequeira-Lopez ML, Firsov D  Local renal circadian clocks control fluid-electrolyte homeostasis and BP. J Am Soc Nephrol. 2014; 25(7):1430-9.
21. Stow LR, Gumz ML. The circadian clock in the kidney. J Am Soc Nephrol. 2011; 22(4): 598-604. 
22. Dotsyuk L.H., Kushnir I.H. Vplyv melatoninu na tsyrkadiannyy rytm hlomerulo-tubulyarnoho i tubulo-tubulyarnoho balansu v nyrkakh. Svit medytsyny ta biolohiyi. 2011; 3:S. 29-31.
23. Ramirez-Rodriguez G, Meza I, Hernandez ME et al. Melatonin induced cyclic modulation of vectorial water transport in kidney-derived MDCK cells. Kidney Int. 2003; 63 (4): 1356-1364.
24. Richardson BA, Studier EH, Stallone JN, Kennedy CM. Effects of melatonin on water metabolism and renal function in male Syrian hamsters (Mesocricetus auratus). J Pineal Res. 1992; 13: 49-59.
25. Tsuda T, Ide M, Iigo M. Influences of season and temperature, photoperiod, and subcutaneous melatonin infusion on the glomerular filtration rate of ewes. J Pineal Res. 1995; 19: 166-172.
26. Pishak V.P. Funkcional'nye svyazi e'pifiza i pochek u pozvonochnyh: avtoref. dis. na soisk. nauch. step. dokt. med. Nauk. К., 1985: 32 s. 
27. Pyshak V.P., Krivchanskaya N.I., Pyshak O.V., Gricyuk M.I., Gromyk O.A. Melatonin i ritm funkcii pochek. Zdorov'e i obrazovanie v XXI veke. 2013; 15 (1-4): 205-208. 
28. Pishak V.P., Kryvchans'ka M.I. Zmina tsyrkadianoyi orhanizatsiyi funktsiy nyrok pid vplyvom propranololu: uchast' shyshkopodobnoyi zalozy / Zb. nauk. prats' spivrobit. NMAPO imeni P.L. Shupyka. 2014; 23 (2): 131-132. 
29. Goranskij A.I., Vinogradova I.A. Osmo- i ionoreguliruyushhaya funkciya pochek v usloviyah sezonnogo kolebaniya osveshhennosti na Evropejskom Severe / Svetovoj rezhim, starenie i rak. Sbornik nauchnyh trudov II Rossijskogo simpoziuma s mezhdunarodnym uchastiem (Petrozavodsk, 17-19 oktyabrya 2013 goda). Kirov: MCNIP, 2013: S. 46–54.
30. Goranskij A.I., Vinogradova I.A. Formirovanie osmo- i ionoreguliruyushhej funkcij pochek krys na rannih e'tapah postnatal'nogo ontogeneza v razlichnyh svetovyh rezhimah / Mat. nauchno-praktich. konferencii «Petrozavodskij pediatricheskie chteniya – VIII: aktual'nye voprosy pediatrii», Petrozavodsk: Izd-vo PetrGU, 2011: 14-16.
31. Goranskij A.I., Vinogradova I.A., Ilyuha V.A., Hizhkin E.A., Il'ina T.N. Izmenenie vodovydelitel'noj, osmo- i ionoreguliruyushhej funkcij i nekotoryh biohimicheskih pokazatelej pochek krys pod vliyaniem svetovyh rezhimov / VII Sibirskij sezd fiziologov. Materialy sezda. Pod red. L.I. Aftasa i dr. Krasnoyarsk, 2012: 135-136.
32. Bojchuk T.M. Petrishen O.І. Koreguyuchij vpliv melatonіnu na funkcіyu morfologіchno zmіnenih nirok. Svіt medicini ta bіologії. 2011; 2: 12-15.
33. Homenko V.G. Korrigiruyushhee dejstvie melatonina hronoritmtcheskih narushenij fibrinoliza i proteoliza tkanej pochek. Molodoj uchenyj. 2014; 4 (7): 101-103.
34. Imamoрlu M, Cay A, Cobanoglu U, Bahat E, Karahan C, Tosun I, Sarihan H. Effects of melatonin on suppression of renal scarring in experimental model of pyelonephritis. Urology. 2006 Jun;67(6):1315-1319.
35. Stacchiotti A, Favero G, Giugno L, Lavazza A, Reiter RJ, Rodella LF, Rezzani R. Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: protective role of melatonin. PLoS One. 2014; 9(10): е111141.
36. Song Y, Chan CWY, Brown GM et al. Studies of the renal action of melatonin: evidence that the effects are mediated by 37 kDa receptors of the Mel1a subtype localized primarily to the basolateral membrane of the proximal tubule. FASEB J 1997; 11 (1): 93-100.
37. Hrenak J, Paulis L, Repova K, Aziriova S, Nagtegaal EJ, Reiter RJ, Simko F. Melatonin and Renal Protection: Novel Perspectives from Animal Experiments and Human Studies (review ). Curr Pharm Des. 2015; 21 (7): 936-949.
38. Russcher M, Koch B, Nagtegaal E, Putten K, Wee P, Gaillard C. The role of melatonin treatment in chronic kidney disease. Front Biosci (Landmark Ed). 2012; 17: 2644-56. 
39. Koch BC, Nagtegaal JE, Hagen EC, Wee PM, Kerkhof GA. Different melatonin rhythms and sleep-wake rhythms in patients on peritoneal dialysis, daytime hemodialysis and no cturnal hemodialysis. Sleep Med. 2010; 11(3): 242-6. 
40. Aperis G, Prakash P, Paliouras C, Papakonstantinou N, Alivanis P. The role of melatonin in patients with chronic kidney disease undergoing haemodialysis. J Ren Care. 2012; 38 (2): 86-92. 
41. Koch ВС,  Putten К, Someren EJW, Wielders JPM, Weel РМ, Nagtegaal JE, Gaillard  . Impairment of endogenous melatonin rhythm is related to the degree of chronic kidney disease (CREAM study) Nephrol. Dial. Transplant. 2010; 25 (2): 513-519.
42. Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals:a review of the complex regulation of melatonin synthesis by norepinephrine, peptides,and other pineal transmitters. Pharmacol Rev. 2003; 55(2): 325-395.
43. Holmes EW, Hojvat SA, Kahn SE, et al. Testicular dysfunction in experimental chronic renal insufficiency: a deficiency of nocturnal pineal N-acetyltransferase activity. Br J Exp Pathol. 1989; 70: 349–356.
44. Ulfberg J, Micic S, Strøm J Afternoon serum-melatonin in sleep disordered breathing. J Intern Med. 1998; 244: 163–168.
45. Koch BC, Hagen EC, Nagtegaal JE, et al. Effects of nocturnal hemodialysis on melatonin rhythm and sleep–wake behavior: an uncontrolled trial. Am J Kidney Dis. 2009; 53: 658-664.
46. Aperis G, Prakash P, Paliouras C, et al. The role of melatonin in patients with chronic kidney disease undergoing haemodialysis. J Ren Care. 2012; 38: 86-92.
47. Vaziri ND, Oveisi F, Reyes GA, et al. Dysregulation of melatonin metabolism in chronic renal insufficiency: role of erythropoietin-deficiency anemia. Kidney Int. 1996; 50: 653–656.
48. Benz RL, Pressman MR, Hovick ET, et al. A preliminary study of the effects of correction of anemia with recombinant human erythropoietin therapy on sleep, sleep disorders, and daytime sleepiness in hemodialysis patients (The SLEEPO study) Am J Kidney Dis. 1999; 34: 1089–1095. 
49. Putten К, Koch В, Someren Е, Wielders J, Wee PT, Nagtegaal Е, Gaillard С The role of renal function loss on circadian misalignment of cytokines EPO, IGF-1, IL-6 and TNF-alfa in chronic renal disease. Neuroendocrinology Letters. 2011; 32 (2): 148-153.
50. Nagtegaal JE, Smits MG, Kerkho GA, et al. in Treatise on Pineal Gland and Melatonin, Chronobiological, clinical and pharmacological aspects of melatonin in human circadian rhythm dysfunction [in: editors C. Haldar, M. Singaravel, S. Kumar Maitra (Treatise on Pineal Gland and Melatonin)]. Enfield, UK: Science Publishers. 2002: 461-489. 
51. Negoro H, Kanematsu А, Yoshimura К, Ogawa О. Нronobiology of Micturition: Putative Role of the Circadian Clock The Gournal of urology. 2013; 190 (3): 843–849. 
52. Huang М, Chiu А, Wang С, Kuo Н. Prevalence and risk factors for nocturia in middle-aged and elderly people from public health centers in Taiwan. Вraz j urol. 2012; 38 (6): 818-824. 
53. Sugaya K, Nishijima S, Miyazato M, Kadekawa K, Ogawa Y Effects of melatonin and rilmazafone on nocturia in the elderly. J Int Med Res. 2007; 35(5): 685-91. 
54. Obayashi K, Saeki K, Iwamoto J, Okamoto N, Tomioka K, Nezu S, Ikada Y, Kurumatani N Positive effect of daylight exposure on nocturnal urinary melatonin excretion in the elderly: a cross-sectional analysis of the heijo-kyo study. J Clin Endocrinol Metab. 2012; 97 (11): 4166-4173. 
55. Obayashi K, Saeki K, Kurumatani N. Association between Melatonin Secretion and Nocturia in Elderly Individuals: a Cross-Sectional Study of the heijo-kyo Cohort. The Journal of urology. 2014; 191 (6):1816–1821. 
56. Hanly P, Gabor JY, Chan C, et al. Daytime sleepiness in patients with CRF: impact of nocturnal hemodialysis. Am J Kidney Dis. 2003; 41:403–410. 
57. Koch BC, Nagtegaal JE, Kerkhof GA, et al. Circadian sleep–wake rhythm disturbances in end-stage renal disease. Nat Rev Nephro. 2009; 5: 407-416. 
58. Malinovskaya N.K. Rol' melatonina v organizme cheloveka. Klinicheskaya medicina. 1998; 76 (10): 15-23

Вернуться к номеру