Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



СІМЕЙНІ ЛІКАРІ ТА ТЕРАПЕВТИ
день перший
день другий

АКУШЕРИ ГІНЕКОЛОГИ

КАРДІОЛОГИ, СІМЕЙНІ ЛІКАРІ, РЕВМАТОЛОГИ, НЕВРОЛОГИ, ЕНДОКРИНОЛОГИ

СТОМАТОЛОГИ

ІНФЕКЦІОНІСТИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, ГАСТРОЕНТЕРОЛОГИ, ГЕПАТОЛОГИ
день перший
день другий

ТРАВМАТОЛОГИ

ОНКОЛОГИ, (ОНКО-ГЕМАТОЛОГИ, ХІМІОТЕРАПЕВТИ, МАМОЛОГИ, ОНКО-ХІРУРГИ)

ЕНДОКРИНОЛОГИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, КАРДІОЛОГИ ТА ІНШІ СПЕЦІАЛІСТИ

ПЕДІАТРИ ТА СІМЕЙНІ ЛІКАРІ

АНЕСТЕЗІОЛОГИ, ХІРУРГИ

"Pain. Joints. Spine." 4 (04) 2011

Back to issue

Адгезия

Authors: Дедух Н.В., Заведующая лабораторией морфологии соединительной ткани ГУ «Институт патологии позвоночника и суставов им. проф. М.И. Ситенко НАМН Украины», доктор биологических наук, профессор

Categories: Family medicine/Therapy, Rheumatology, Traumatology and orthopedics, Neurology

print version

В биологии понятие «адгезия» включает в себя способность клеток формировать определенные типы гистологических структур, прикрепляться к субстратам, в том числе и синтетическим, которые используются в качестве заместительных материалов в хирургии. Специфичность клеточной и межклеточной адгезии определяется экспонированием на наружной поверхности клеток и присутствием в матриксе определенной комбинации и концентрации молекул рецепторов, в качестве которых выступаю  т различные белковые молекулы. У внутренней поверхности плазматической мембраны рецепторы адгезии взаимодействуют с целым комплексом примембранных белков, которые служат для регулирования их функций, связи с цитоскелетом, а также для транс­дукции сигналов с клеточной поверхности. Способность клеток к специфическому взаимному узнаванию и адгезии важна для эмбрионального развития, а у взрослого человека адгезивные взаимодействия «клетка — клетка» и «клетка — матрикс» существенны для поддержания стабильности тканей и их функционирования.

Молекулы адгезии к внеклеточному матриксу и молекулы межклеточной адгезии разделяются на следующие группы: интегрины, кадгерины, иммуноглобулины и селектины, а также протеогликаны и гликопротеины. Благодаря присутствию этих молекул клетки способны избирательно связываться с другими клетками и с внеклеточным матриксом.

 

Молекулы адгезии

В многочисленном семействе рецепторов клеточной адгезии наиболее изучены интегрины, селектины, кадгерины и иммуноглобулины.

Интегрины. Идентифицировано около 20 разных членов семейства рецепторов-интегринов в разных типах клеток. Интегрины представляют собой поверхностные гетеродимерные белки, которые обеспечивают адгезию клеток к компонентам внеклеточного матрикса и к другим клеткам. Индивидуальные интегрины строго специфичны. Центр связывания интегринов образован внеклеточными доменами a- и b-субъединиц [1]. Интегрины функционируют в качестве как клеточно-субстратных, так и межклеточных адгезивных рецепторов, то есть они узнают и связывают молекулы межклеточного матрикса, имеющие определенную аминокислотную последовательность, такую как Арг-Гли-Асп, присутствующую в коллагене I типа, фибронектине, фибриногене, ламинине и др.; также, являясь трансмембранными белками, они взаимодействуют и с белками цитоскелета клетки. Передача информации может идти в направлении от внутриклеточных белков через рецептор во внеклеточный матрикс, а также из внеклеточной среды в клетку, определяя таким образом направленность ее дифференцировки, форму, митотическую активность, а также способность к движению. Исследования рецепторов интегринов важны для изучения взаимодействия клетки с коллагенами и фибронектином.

Таким образом, клеточно-матриксные взаимодействия интегринов модулируют широкий спектр поведения клеток за счет лиганд-рецепторного взаимодействия, вызывая специфический ответ клетки.

Кадгерины — семейство трансмембранных Са2+-зависимых гликопротеинов, участвующих в межклеточной адгезии [2]. Эти молекулы состоят из 723–748 аминокислотных остатков, являются важной составной частью адгезивных контактов, ответственны за организацию цитоскелета клетки. Кадгерины появляются в основном при межклеточной адгезии на стадиях морфо- и органогенеза. Они обеспечивают структурную целостность тканей (особенно эпителиального монослоя).

Селектины — семейство адгезивных гликопротеидов, которые имеют три характерные черты: вариабельное число (от 2 до 9) повторов комплемент-регуляторных белков, домен эпидермального фактора роста (EGF) и N-кон­цевой лектиновый домен [2]. Физиологическая роль селектинов зависит от особенностей их организации. Хорошо изучены селектины L, P и E, а также гликопротеиновый лиганд-1 Р-селектина [1].

Иммуноглобулины. К суперсемейству иммуноглобулинов принадлежит ряд молекул адгезии эндотелиальных клеток, в том числе молекулы межклеточной адгезии, обозначаемые как ICAM-1, -2, -3, VCAM-1. На эндотелиальных клетках они являются поверхностными лигандами для интегринов LFA-1 и VLA-4. VCAM-1 играет важную роль в адгезии лимфоцитов. Высокий уровень экспрессии ICAM-2 имеет место на покоящихся эндотелиальных клетках.

Адгезивные рецепторы суперсемейства иммуноглобулинов участвуют в межклеточной адгезии, которая особенно важна в эмбриогенезе, заживлении ран и при иммунном ответе.

 

Фокальные комплексы адгезии

Клетки прикрепляются к поверхности только в отдельных локусах, так называемых точках фокальной адгезии. Фокальные комплексы адгезии индивидуальны для различных типов клеток. В среднем расстояние от клеток до субстрата в фокальных контактах составляет 10–15 микрон. Идентифицировано более 50 белков, принимающих участие в процессах адгезии клеток к матриксу [3].

Адгезия клеток тесно связана с функционированием аппарата движения клеток — микрофибриллами и микротрубочками, в которых формируются фокальные комплексы. Классы адгезивных структур зависят от натяжения и активности разных членов семейства генов. В качестве примера: гены Rho активны для актинового цитоскелета, а гены Rac1 и RhoA — для цитоскелета микротрубочек, что необходимо для поляризации и движения, гены Rac1 и Cdc42 — для формирования фокальных комплексов [4]. Цитоскелет в адгезивных взаимодействиях, вероятно, принимает участие в стабилизации молекул клеточной адгезии, что облегчает многоточечное связывание, а также придает прикрепляющейся клетке способность оказывать адгезию по отношению к соседней клетке или внеклеточному матриксу (и наоборот). От набора специфических типов молекул клеточной адгезии, присутствующих на поверхности двух соседних клеток, их распределения на ней, а также от их концентрации, связи с цитоскелетом зависит итоговая аффинность, при которой две соседние клетки связываются друг с другом или с внеклеточным матриксом [5].

В целом формирование фокальных комплексов адгезии — это скоординированная работа различных генов, экспрессирующих белки адгезии. Усиление связывания, осуществляемого молекулами клеточной адгезии, достигается за счет одновременного функционирования множества рецепторов с большим количеством лигандов на поверхности соседней клетки или в прилегающем матриксе. Адгезия двух типов клеток может модифицироваться в результате повышения количества адгезивных молекул на плазматической мембране либо при изменении их аффинности. Это может происходить двумя путями — за счет внутриклеточных везикул, способных активизироваться и через несколько минут устремляться к плазматической мембране, либо путем биосинтеза молекул и переноса их к мембране, что занимает несколько часов.

В классе молекул адгезии клетки с межклеточным веществом наиболее изучен ламинин — гетеротримерный протеин, состоящий из трех полипептидных цепей — a, b и g. На сегодня для позвоночных описано 5 различных a-цепочек (a1–a5), 3 различных b-цепочки (b1–b3) и g-цепочки (g1–g3). Комбинация этих цепочек формирует около 15 изоформ ламинина с профилем экспрессии, значительно отличающимся в различных тканях и на этапах развития [6]. Ламинины регулируют множество биологических функций, включая клеточную адгезию, движение клеток, пролиферацию, дифференциацию и продолжительность существования. Взаимодействие клеток с ламинином матрикса обеспечивается различными рецепторами, расположенными на поверхности клетки, включая интегрины a3b1, a6b1, a6b4 и a7b1.

Ламинины выявляются в различных клетках и тканях, в том числе в кости и межпозвоночном диске.

С нарушением способности клеток к прикреплению и избирательности адгезии связан широкий спектр патологических состояний: нейромышечных и неврологических расстройств, хронических воспалений, дегенеративных заболеваний, а также опухолевой инвазии и метастазирования.

 

Межпозвоночный диск и адгезия клеток

Mежпозвоночный диск человека является динамичной структурой, которая претерпевает существенное изменение в макромолекулярной организации матрикса, составе и популяции клеток в процессе роста, старения и дегенерации. Межпозвоночный диск состоит из двух различных тканей — студенистого ядра и фиброзного кольца. Фиброзное кольцо представлено пластинами упорядоченно расположенных коллагеновых волокон, состоящих из коллагенов I и II типов [7]. Клетки фиброзного кольца (фиброхондроциты) ориентированы параллельно основному направлению волокон коллагена в пластинках и формируют длинные отростки, что помогает адгезии с межклеточным матриксом [8, 9]. Клетки внутреннего отдела фиброзного кольца и студенистого ядра имеют округлую форму, формируют перицеллюлярный матрикс, состоящий из фибронектина, коллагенов VI и II типов, а также протеогликанов. В студенистом ядре содержится большое количество беспорядочно расположенных волокон коллагена II типа и высокая концентрация протеогликанов.

Наиболее выраженные изменения в межпозвоночном диске происходят в центральном отделе студенистого ядра. При этом гелеобразная ткань теряет свою структурную организацию за счет снижения содержания протеогликанов и воды, нарушения адгезии клеток, что сопровождается дегенерацией структуры фиброзного кольца и студенистого ядра.

Клетки студенистого ядра синтезируют растворимые факторы, стимулирующие биосинтез и пролиферацию клеток в фиброзном кольце [10, 11].

Ламинины, располагаясь в матриксе, путем адгезии с клетками диска поддерживают их жизнеспособность и способствуют сохранению их фенотипа. Ламинин-клеточное взаимодействие является важной и уникальной составляющей для функционирования межпозвоночного диска.

Специфические изоформы ламининов и рецепторов были идентифицированы в различных областях межпозвоночного диска, но наиболее детально изучены в студенистом ядре.

В незрелом студенистом ядре и изолированных клетках методами иммуногистохимии была идентифицирована изоформа ламинина 111, адгезирующая длинные нотохордальные клетки с помощью изоформ ламинина 511 и рецепторов интегринов (a6 и 4b, CD239) [12–14]. Также выявлен высокий уровень экспрессии цепочки g1-ламинина в незрелых клетках студенистого ядра, параллельно с экспрессией  a6-субъединицы интегрина, и показано, что клетки студенистого ядра соединяются с ламинином 111 через интегрин-проводящий путь, который характерен только для этих клеток, в отличие от клеток смежного фиброзного кольца [13]. Выявлена адгезия клеток зрелого студенистого ядра с коллагеном II типа и с фибронектином межклеточного матрикса при участии изоформ ламинина 511 и 332. При этом адгезивная способность этих макромолекул была значительно больше по сравнению с ламинином 111. Однако изоформы ламинина специфичны для незрелой и зрелой ткани студенистого ядра, связанных с ней рецепторов и их функциональное значение остается недостаточно изученным.

Значительные различия изоформ ламинина наблюдались между клетками студенистого ядра и фиброзного кольца, в том числе имели место различия в экспрессии a6-интегрина, субъединиц b3 b4 b6 клеточной адгезии. Содержание ламининов выше в студенистом ядре по сравнению с фиброзным кольцом [15].

Адгезивные качества в диске могут зависеть от особенностей организации аггрекана. Межпозвоночный диск — это бессосудистая ткань. В качестве субстрата, ингибирующего прорастание сосудов в диск и их адгезию, выступает аггрекан, в частности соотношение в нем цепей гликозаминогликанов (хондроитинсульфаты и кератансульфаты) [16]. Выявлено, что аггреканы, присутствующие в фиброзном кольце, обладают более выраженным ингибирующим действием на адгезию эндотелиальных клеток по сравнению с клетками пульпозного ядра [17].

Имеются единичные исследования, в которых была изучена экспрессия субъединиц интегринов, коллагена и фибронектина в дисках с грыжами [18]. С помощью полимеразной цепной реакции и иммунопреципитации были оценены a1-, a2-, a5-, av-, b1- и b3-субъединицы интегрина, измерен уровень и-РНК, экспрессирумой для коллагенов I и II типов, а также для фибронектина. Экспрессия субъединиц a5 и b1 была увеличена в межпозвоночных дисках с протрузией и особенно в дисках с экструзией. Различий в экспрессии a1, a2, av и b3 в нормальных и дегенеративных дисках не выявлено. Фибронектин, связывающий интегриновые рецепторы a5 и b1, был повышен. В дисках с грыжеобразованием было также повышено содержание коллагена I типа, а коллагена II типа — снижено. Эти результаты можно объяснить нарушением адгезии между клетками и матриксом при дегенерации.

Еще одним вопросом, нуждающимся в изучении, является исследование адгезивных возможностей био­материалов. Перспективным может быть насыщение поверхности биоматериалов адгезивными молекулами для лучшего контакта имплантата с тканью реципиента [19].

Таким образом, одно из актуальных направлений в изучении клеточно-матриксных взаимодействий — это исследование молекул адгезии, вносящих определенный вклад в двигательные функции клетки в норме и патологии, влияющих на ее пролиферацию и метаболизм, формирование и поддержание жизнеспособности клеток и тканей.


Bibliography

1. Голенченко В.А. Биологические мембраны / Биохимия: Учеб. для вузов / Под ред. Е.С. Северина — М.: ГЭОТАР-МЕД, 2003. — С. 245-248.

2. Молекулы адгезии. — Электронный ресурс. Режим доступа: http://laboratory.rusmedserv.com/files/41_Molekuly_Adgezii.pdf.

3. Zamir E. Molecular complexity and dynamics of cell-matrix adhesions / E. Zamir, B. Geiger // J. Cell Sci. — 2001. — Vol. 114. — P. 3583-3590.

4. Rho proteins, PI 3-kinases and monocyte/macrophage motility / A.J. Ridley, K.A. Beningo, M. Dembo et al. // FEBS Lett. — 2001. — Vol. 498. — P. 168-171.

5. Молекулы клеточной адгезии и рецепторы: сравнение функционирования. — Электронный ресурс. Режим доступа: http://humbio.ru/humbio/cytology/0000fac4.htm.

6. Colognato H. Form and function: the laminin family of geterotrimers / H. Colognato, P.D. Yurchenco // Dev. Dyn. — 2000. — Vol. 218. — P. 213-234.

7. Schollmeier G. Observationson fiber-forming collagens in the annulus fibrosus / G. Schollmeier, R. Lahr-Eigen, K.U. Lewandrowski // Spine. — 2000. — Vol. 25. — P. 2736-2741.

8. Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc / S.B. Bruehlmann, J.B. Rattner, J.R. Matyas, N.A. Duncan // J. Anat. — 2002. — Vol. 201. — P. 159-171.

9. The micromechanical environment of intervertebral disc cells determined by a finite deformation, anisotropic, and biphasic finite element model / A.E. Baer, T.A. Laursen, F. Guilak, L.A. Setton // J. Biomech. Eng. — 2003. — Vol. 125. — P. 1-11.

10. Boyd L.M. Conditioned medium differentially regulates matrix protein gene expression in cells of the intervertebral disc / L.M. Boyd, J. Chen, L.A. Setton // Spine. — 2004. — Vol. 29, № 20. — P. 2217-2222.

11. Erwin W.M. Notochord cells regulate intervertebral disc chondrocyte proteoglycan production and cell proliferation / W.M. Erwin, R.D. Inman // Spine. — 2006. — Vol. 31, № 10. — P. 1094-1099.

12. Nettles D.L. Integrin expression in cells of the intervertebral disc / D.L. Nettles, W.J. Richardson, L.A. Setton // J. Anat. — 2004. — Vol. 204. — P. 515-520.

13. Functional integrin subunits regulating cell-matrix interactions in the intervertebral disc / C.L. Gilchrist, J. Chen, W.J. Richardson et al. // Journal of orthopaedic research: official publication of the Orthopaedic Research Society. — 2007. — Vol. 25, № 6. — P. 829-340.

14. Expression of laminin isoforms, receptors and binding proteins unique to nucleus pulposus cells of immature intervertebral disc / J. Chen, L. Jing, C.L. Gilchrist et al. // Connect Tissue Res. — 2009. — Vol. 50, № 5. — P. 294-306.

15. Gilchrist C.L. Nucleus pulposus cell-matrix interactions with laminins / C.L. Gilchrist, A.T. Francisco, G.E. Plopper // European Cells and Materials. — 2011. — Vol. 21 — P. 523-532.

16. Roberts S. Human intervertebral disc aggrecan inhibits endothe­lial cell adhesion and cell migration // Quality validation date: 2006-08-01 — http://cordis.europa.eu/search/index.cfm?fusea­ction= result.document&RS_LANG=EN&RS_RCN=8736051&pid=0&q=333B31F93B8EDF8EEAF50068770EAFC7&type=adv.

17. Human intervertebral disc aggrecan inhibits endothelial cell adhesion and cell migration in vitro / W.E.B. Johnson, B. Caterson, S.M. Eisenstein, S. Roberts // Spine. — 2005. — Vol. 30, Iss. 10. — P. 1139-1147.

18. Xia М. Expression of integrin subunits in the herniated intervertebral disc / М. Xia, Y. Zhu // Connect. Tissue Res. — 2008. — Vol. 49, № 6. — P. 464-469.

19. Laminin-functionalized biomaterials for intervertebral disc regeneration / A.T. Francisco, D. Phu, R.J. Mancino et al. — Электронный ресурс. Режим доступа: www.abstracts.conferencestrategists.com.


Back to issue